

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Ab initio calculation of dynamic observables and sum rules in light nuclei

Nir Nevo Dinur¹

Chen Ji², Javier Hernandez^{1,3} Sonia Bacca^{1,4}, Nir Barnea⁵

INT, Seattle — March 24 2017

¹TRIUMF, ²ECT* and INFN-TIFPA,

³University of British Columbia, ⁴University of Manitoba,

⁵The Hebrew University of Jerusalem

- Summary
- Application

Results

Methods

Motivation

calculation of dynamic observables and sum rules

1 / 25

Summary

The LIT & LSR Methods can be used with any bound-state method to obtain dynamic observables (e.g., in the nuclear continuum)

Application

Results

Methods

Summary

- The LIT & LSR Methods can be used with any bound-state method to obtain dynamic observables (e.g., in the nuclear continuum)
- Application
- Precise nuclear calculations are crucial in many high-profile efforts, e.g. ν -less $\beta\beta$ decay; searches for EDMs; etc. Particularly, nuclear corrections are the bottleneck in μA spectroscopy.

Results

Methods

Summary

- The LIT & LSR Methods can be used with any bound-state method to obtain dynamic observables (e.g., in the nuclear continuum)
- Application
- Precise nuclear calculations are crucial in many high-profile efforts, e.g. ν -less $\beta\beta$ decay; searches for EDMs; etc. Particularly, nuclear corrections are the bottleneck in μA spectroscopy.

Results

For A =3,4 we reduced the uncertainties in these corrections from $\sim 20\%$ to 4–6% as required for ongoing experiments.

Methods

•	_	um	m	1	V\ I
•	. JI	um	ш	a	ΙV

The LIT & LSR Methods can be used with any bound-state method to obtain dynamic observables (e.g., in the nuclear continuum)

Application

Precise nuclear calculations are crucial in many high-profile efforts, e.g. ν -less $\beta\beta$ decay; searches for EDMs; etc. Particularly, nuclear corrections are the bottleneck in μA spectroscopy.

Results

For A =3,4 we reduced the uncertainties in these corrections from $\sim 20\%$ to 4–6% as required for ongoing experiments.

Methods

We use the **LSR method** to calculate the relevant sum-rules.

We proved its applicability using the LIT method.

The LIT method has been successfully applied to calculate many EW-induced reactions. Some applications have yet to be demonstrated.

Summary	The LIT & LSR Methods can be used with any bound-state method to
	obtain dynamic observables (e.g., in the nuclear continuum)

- Application Precise nuclear calculations are crucial in many high-profile efforts, e.g. ν -less $\beta\beta$ decay; searches for EDMs; etc. Particularly, nuclear corrections are the bottleneck in μA spectroscopy.
- Results For A= 3,4 we reduced the uncertainties in these corrections from $\sim 20\%$ to 4–6% as required for ongoing experiments.
- We use the **LSR method** to calculate the relevant sum-rules.

 Methods

 We proved its applicability using the LIT method.
- Methods
 We proved its applicability using the LIT method.
 The LIT method has been successfully applied to calculate many
 EW-induced reactions. Some applications have yet to be demonstrated.
- Motivation
 LIT & LSR were applied with Coupled-Cluster for calculations in:
 ⁴He, ^{16,22}O, ^{40,48}Ca... (G. Hagen et al., PRC'14; PRC'16; Nature'16;...)

How big is the proton?

R. Pohl & J. Krauth @ CREMA

How big is the deuteron?

R. Pohl et al., Science 2016

Ongoing μ -Spectroscopy Experiments

CREMA @ PSI

Extract precise **charge radii** R_c from Lamb shift (LS) in:

- μ H (published 2010,2013: **proton radius puzzle**)
- μD (published 2016: **deuteron radius puzzle**)
- $\mu^4 \text{He}^+$ (measured 2014, finalizing: agreement with $e^{-4} \text{He}$?!)
- μ^3 He⁺ (measured 2014, analyzing: ???) \Rightarrow radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^3 H. μ^6 He⁺. $\mu^{6,7}$ Li⁺² ... (possible?)

Ongoing μ -Spectroscopy Experiments

CREMA @ PSI

Extract precise **charge radii** R_c from Lamb shift (LS) in:

- μ H (published 2010,2013: **proton radius puzzle**)
- μD (published 2016: **deuteron radius puzzle**)
- $\mu^4 \text{He}^+$ (measured 2014, finalizing: agreement with $e^{-4} \text{He}$?!)
- μ^3 He⁺ (measured 2014, analyzing: ???) \Longrightarrow radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract magnetic radii R_m from Hyper-fine splitting (HFS) in:

• μ H & μ 3 He $^{+}$ (approved)

CREMA @ PSI

Extract precise **charge radii** R_c from Lamb shift (LS) in:

- μ H (published 2010,2013: **proton radius puzzle**)
- μD (published 2016: **deuteron radius puzzle**)
- $\mu^4 \text{He}^+$ (measured 2014, finalizing: agreement with $e^{-4} \text{He}$?!)
- μ^3 He⁺ (measured 2014, analyzing: ???) \Longrightarrow radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^3 H, μ^6 He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract **magnetic radii** R_m from Hyper-fine splitting (HFS) in:

• μ H & μ 3 He $^{+}$ (approved)

FAMU @ RIKEN-RAL / J-PARC

• HFS in μ H in two new methods (planned)

Precise R_c/R_m from μA LS/HFS Require accurate theoretical inputs from QED, hadron and nuclear physics

6 / 25

R. Pohl (for CREMA), presentation at ECT*, Trento, Italy (2012)

Extract $R_c \equiv \sqrt{\langle r^2 \rangle}$ from Lamb shift measurement

$$\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} \left(R_c \right) + \delta_{TPE}$$

Extract $R_c \equiv \sqrt{\langle r^2 angle}$ from Lamb shift measurement

$$\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} (R_c) + \delta_{TPE}$$

- QED corrections:
 - vacuum polarization
 - lepton self energy
 - relativistic recoil effects
- \bullet Theory of μ -p, D, $^{3,4}{\rm He}^+$ reexamined

Martynenko et al. '07, Borie '12, Krutov et al. '15

Karshenboim et al. '15, Krauth et al. '15 ...

Extract $R_c \equiv \sqrt{\langle r^2 \rangle}$ from Lamb shift measurement

$$\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} \left(R_c \right) + \delta_{TPE}$$

- Nuclear structure corrections (One-Photon Exchange)
 - finite-size effect: $\delta_{size} = \frac{m_r^3}{12} \, (Z\alpha)^4 \! imes \! R_c^2$

Extract $R_c \equiv \sqrt{\langle r^2 angle}$ from Lamb shift measurement

$$\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} \left(R_c \right) + \frac{\delta_{TPE}}{\delta_{CED}}$$

- Nuclear structure corrections (Two-Photon Exchange)
 - $\delta_{\text{TPE}} = ?$
 - ⇒ related to nuclear response functions:

$$S_O(\omega) = \int |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

- ⇒ can be extracted from data (very imprecise)
- ⇒ or calculated (continuum few-body problem)

Extract $R_c \equiv \sqrt{\langle r^2 angle}$ from Lamb shift measurement

$$\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} (R_c) + \delta_{TPE}$$

- Nuclear structure corrections (Two-Photon Exchange)
 - $\delta_{\text{TPE}} = ?$
 - ⇒ related to nuclear response functions:

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

- ⇒ can be extracted from data (very imprecise)
- ⇒ or calculated (continuum few-body problem)
- Very small is it important?

The accuracy of R_c is limited by δ_{TPE}

Example — μD :

$$\begin{array}{lll} \Delta E_{\rm QED}^{\rm LS} & = & 228.77356(75)\,{\rm meV} \\ \Delta E_{\rm rad.-dep.}^{\rm LS} & = & -6.11025(28)\,r_{\rm d}^2\,{\rm meV/fm^2} + 0.00300(60)\,{\rm meV} \\ \Delta E_{\rm TPE}^{\rm LS} & = & 1.70910(2000)\,{\rm meV} \end{array}$$

J. Krauth et al. (CREMA), Ann. Phys. (2016); R. Pohl et al. (CREMA), Science 2016

Status — prior to $\mu^{3,4} He^+$ measurements:

- Uncertainty in $\delta_{\rm pol}$: $\sim 20\%$
- Required: $\sim 5\%$ (to determine R_c with $\sim 10^{-4}$ accuracy)

Dynamical (polarization) contributions to δ_{TPE}

$$\delta_{TPE} = \sum_{a} I_a = \sum_{a} \int d\omega \, S_a(\omega) \, g_a(\omega)$$

• The leading polarization contribution relates to the dipole response

$$I_{D1}^{(0)} \propto \int_{\omega_{\rm kh}}^{\infty} d\omega \, S_{D_1}(\omega) \, \omega^{-1/2}$$

• $S_{D_1}(\omega) \Longrightarrow$ electric dipole response function $[\hat{D}_1 = R Y_1(\hat{R})]$

Dynamical (polarization) contributions to δ_{TPE}

$$\delta_{TPE} = \sum_{a} I_a = \sum_{a} \int d\omega \, S_a(\omega) \, g_a(\omega)$$

• The leading polarization contribution relates to the dipole response

$$I_{D1}^{(0)} \propto \int_{\omega_{\rm th}}^{\infty} d\omega \, S_{D_1}(\omega) \, \omega^{-1/2}$$

- $S_{D_1}(\omega) \Longrightarrow$ electric dipole response function $[\hat{D}_1 = RY_1(\hat{R})]$
- ⇒ can be extracted from data (very imprecise)
- ⇒ or calculated (continuum few-body problem)

Extract δ_{TPE} from data: ⁴He Photoabsorption

electric dipole photoabsorption cross section $\sigma_{\gamma}(\omega)=4\pi^2\alpha\omega S_{D1}(\omega)$

System	Our Ref.	Unc.	Experimental Status
$\mu^{2}H$	Phys. Lett. B '14	$1\% \rightarrow 1.3\%$	published <i>Science</i> '16
$\mu^{4} ext{He}^+$	Phys. Rev. Lett. '13	$20\% \rightarrow 6\%$	measured, unpublished
μ^{3} He $^+$	} Phys. Lett. B '16	$20\% \rightarrow 4\%$	measured, unpublished
μ^{3} H	Filys. Lett. B 10	4%	measurable?

- Our results agree with other values and are more accurate
- \Rightarrow Unc. comparable with $\sim 5\%$ experimental needs
- \Rightarrow Will improve precision of R_c from Lamb shifts
- ⇒ May help shed light on the "proton (deuteron) radius puzzle"

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \text{Im}(\sigma) > 0$$

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \text{Im}(\sigma) > 0$$
$$= \oint df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)}$$

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \operatorname{Im}(\sigma) > 0$$

$$= \sum df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)} = \langle i|\hat{O}^{\dagger}(H - \sigma)^{-1}(H - \sigma^*)^{-1}\hat{O}|i\rangle$$

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \operatorname{Im}(\sigma) > 0$$

$$= \sum \int df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)} = \langle i|\hat{O}^{\dagger}(H - \sigma)^{-1}(H - \sigma^*)^{-1}\hat{O}|i\rangle$$

$$= \langle \tilde{\psi}|\tilde{\psi}\rangle, \ |\tilde{\psi}\rangle \equiv (H - \sigma^*)^{-1}\hat{O}|i\rangle$$

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \operatorname{Im}(\sigma) > 0$$

$$= \sum \int df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)} = \langle i|\hat{O}^{\dagger}(H - \sigma)^{-1}(H - \sigma^*)^{-1}\hat{O}|i\rangle$$

$$= \langle \tilde{\psi}|\tilde{\psi}\rangle, \ |\tilde{\psi}\rangle \equiv (H - \sigma^*)^{-1}\hat{O}|i\rangle \Longrightarrow (H - \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$$

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \operatorname{Im}(\sigma) > 0$$

$$= \sum \int df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)} = \langle i|\hat{O}^{\dagger}(H - \sigma)^{-1}(H - \sigma^*)^{-1}\hat{O}|i\rangle$$

$$= \langle \tilde{\psi}|\tilde{\psi}\rangle , \ |\tilde{\psi}\rangle \equiv (H - \sigma^*)^{-1}\hat{O}|i\rangle \Longrightarrow (H - \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$$

Schrödinger-like equation with a **local** source term (and only the trivial solution to the homogeneous Eq.)

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

$$\mathcal{L}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv \operatorname{Im}(\sigma) > 0$$

$$= \sum \int df \frac{|\langle f|\hat{O}|i\rangle|^2}{(\omega_f - \sigma)(\omega_f - \sigma^*)} = \langle i|\hat{O}^{\dagger}(H - \sigma)^{-1}(H - \sigma^*)^{-1}\hat{O}|i\rangle$$

$$= \langle \tilde{\psi}|\tilde{\psi}\rangle, \ |\tilde{\psi}\rangle \equiv (H - \sigma^*)^{-1}\hat{O}|i\rangle \Longrightarrow (H - \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$$

Schrödinger-like equation with a **local** source term (and only the trivial solution to the homogeneous Eq.)

⇒ Can be solved using any bound-state method

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

- 1. Solve $(H \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$ using a bound-state basis to obtain $\mathcal{L}_{calc}(\sigma) = \langle \tilde{\psi}|\tilde{\psi}\rangle$
- 2. Invert $\mathcal{L}_{calc}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega \sigma_{c})^{2} + \sigma_{c}^{2}}$ using the common ansatz

$$S_N(\omega) = \sum_{n=0}^{N} c_n \phi_n(\alpha) \implies ||\mathcal{L}_{\text{calc}}(\sigma) - \mathcal{L}_N(\sigma)|| < \epsilon$$

Efros et al., JPG'07; Barnea FBS'10; Orlandini et al., FBS'17

- 1. Solve $(H \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$ using a bound-state basis to obtain $\mathcal{L}_{calc}(\sigma) = \langle \tilde{\psi}|\tilde{\psi}\rangle$
- 2. Invert $\mathcal{L}_{\rm calc}(\sigma)=\int d\omega \frac{S(\omega)}{(\omega-\sigma_r)^2+\sigma_z^2}$ using the common ansatz

$$S_N(\omega) = \sum_{n=0}^{N} c_n \phi_n(\alpha) \implies ||\mathcal{L}_{\text{calc}}(\sigma) - \mathcal{L}_N(\sigma)|| < \epsilon$$

ullet Obtaining a good inversion can be tricky, especially when $\mathcal{L}_{\mathrm{calc}}(\sigma)$ is noisy

Calculating $S_O(\omega) = \int |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

- 1. Solve $(H \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$ using a bound-state basis to obtain $\mathcal{L}_{calc}(\sigma) = \langle \tilde{\psi}|\tilde{\psi}\rangle$
- 2. Invert $\mathcal{L}_{\rm calc}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega \sigma_r)^2 + \sigma_r^2}$ using the common ansatz

$$S_N(\omega) = \sum_{n=0}^{N} c_n \phi_n(\alpha) \implies ||\mathcal{L}_{\text{calc}}(\sigma) - \mathcal{L}_N(\sigma)|| < \epsilon$$

- ullet Obtaining a good inversion can be tricky, especially when $\mathcal{L}_{ ext{calc}}(\sigma)$ is noisy
- ullet This method is not sensitive to a specific energy-range of $\mathcal{L}_{
 m calc}(\sigma) \mathcal{L}_N(\sigma)$

The LIT method (Lorentz Integral Transform)

Calculating $S_O(\omega) = D |\langle f|\hat{O}|i\rangle|^2 \delta(\omega_f - \omega)$ using LIT

- 1. Solve $(H \sigma^*)|\tilde{\psi}\rangle = \hat{O}|i\rangle$ using a bound-state basis to obtain $\mathcal{L}_{calc}(\sigma) = \langle \tilde{\psi}|\tilde{\psi}\rangle$
- 2. Invert $\mathcal{L}_{\rm calc}(\sigma) = \int d\omega \frac{S(\omega)}{(\omega \sigma_r)^2 + \sigma_r^2}$ using the common ansatz

$$S_N(\omega) = \sum_{n=0}^{N} c_n \phi_n(\alpha) \implies ||\mathcal{L}_{\text{calc}}(\sigma) - \mathcal{L}_N(\sigma)|| < \epsilon$$

- ullet Obtaining a good inversion can be tricky, especially when $\mathcal{L}_{\mathrm{calc}}(\sigma)$ is noisy
- ullet This method is not sensitive to a specific energy-range of $\mathcal{L}_{\mathrm{calc}}(\sigma) \mathcal{L}_N(\sigma)$
- Small σ_i is needed to resolve fine details of $S(\omega) \Longrightarrow \mathsf{Harder}$ to converge $\mathcal{L}_{\mathrm{calc}}(\sigma)$
- Large σ_i captures better the tail of $S(\omega)$...

Efros et al., JPG'07; Barnea FBS'10; Orlandini et al., FBS'17

The LIT method (Lorentz Integral Transform)

Using few-body bound-state methods, the LIT was applied to electroweak reactions of $2 \le A \le 7$, such as: (Efros et al., JPG'07; Leidemann & Orlandini PPNP'13; Bacca & Pastore JPG'14)

- 1. Photoabsorption cross sections
- 2. Photon scattering
- 3. Electron scattering (longitudinal and transverse response)
- 4. Neutrino breakup of light nuclei in supernovae

The LIT method (Lorentz Integral Transform)

Using few-body bound-state methods, the LIT was applied to electroweak reactions of $2 \le A \le 7$, such as: (Efros et al., JPG'07; Leidemann & Orlandini PPNP'13; Bacca & Pastore JPG'14)

- 1. Photoabsorption cross sections
- 2. Photon scattering
- 3. Electron scattering (longitudinal and transverse response)
- 4. Neutrino breakup of light nuclei in supernovae

Including exclusive reactions

(LaPiana & Leidemann NPA'00; Quaglioni et al., PRC'04,'05; Andreasi et al., EPJA'06; NND et al., FBS'14) which require solving the exclusive LIT equations:

$$(H - \sigma^*)|\tilde{\psi}_f\rangle = \hat{V}_f|\phi_f\rangle$$

The solution of the exclusive LIT equation:

$$(H - \sigma^*)|\tilde{\psi}_f\rangle = \hat{V}_f|\phi_f\rangle$$

can also be used for:

- 1. Radiative capture (by exchanging $i \leftrightarrow f$ in exclusive photodisintegration)
- 2. Semi-inclusive (e, e'N) using the "spectral function approximation" (demonstrated by Efros et al., PRC'98)
- 3. Astrophysical S-factors (demonstrated by S. Deflorian et al., FBS'17)
- 4. Hadron scattering (suggested by V.D. Efros, PAN'99, PIC'17)
- 5. Glauber approximation (suggested by V.D. Efros et al., JPG'07)

LIT calculations: ⁴He Photoabsorption

electric dipole photoabsorption cross section $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$

LIT calculations: ⁴He Photoabsorption

Gazit et al., PRL'06 Quaglioni & Navrátil PLB'07

The work is not completed yet ...

NND et al., Phys. Lett. B (2016)

LSR: Lanczos sum rule method

$$\delta_{\text{TPE}} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{a}(\omega) \, g_{a}(\omega)$$

$$\delta_{\text{TPE}} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{a}(\omega) \, g_{a}(\omega)$$

In general, sum rules are interesting also for:

- 1. Comparison with experiments
- 2. Checking analytic or assumed relations
- 3. Observables of interest $(R_{ch} \leftrightarrow \alpha_D \leftrightarrow R_n R_p \leftrightarrow L(Sym. Energy))$

$$\delta_{\text{TPE}} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{a}(\omega) \, g_{a}(\omega)$$

In general, sum rules are interesting also for:

- 1. Comparison with experiments
- 2. Checking analytic or assumed relations
- 3. Observables of interest $(R_{ch} \leftrightarrow \alpha_D \leftrightarrow R_n R_p \leftrightarrow L(Sym. Energy))$

Problems:

- 1. (May) need to know $S(\omega)$ with good resolution over wide range of energies
- 2. Need to extrapolate $S(\omega)g(\omega)$ to $\omega \to \infty$, difficulty depends on $g(\omega)$ (and \hat{O})

$$\delta_{\text{TPE}} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{a}(\omega) \, g_{a}(\omega)$$

A model-space of size M is used to calculate the LIT of $S(\omega)$

$$\mathcal{L}(\sigma) = \frac{\sigma_i}{\pi} \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv Im(\sigma) > 0$$

$$\mathcal{L}_{M}(\sigma) = \frac{\sigma_{i}}{\pi} \sum_{\mu}^{M} \frac{|\langle \mu | \hat{O} | i \rangle|^{2}}{(\omega_{\mu} - \sigma_{r})^{2} + \sigma_{i}^{2}}$$

$$\Rightarrow |\mathcal{L}(\sigma) - \mathcal{L}_M(\sigma)| \le \varepsilon_M$$

$$\delta_{\text{TPE}} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{a}(\omega) \, g_{a}(\omega)$$

A model-space of size M is used to calculate the LIT of $S\left(\omega\right)$

$$\mathcal{L}(\sigma) = \frac{\sigma_i}{\pi} \int d\omega \frac{S(\omega)}{(\omega - \sigma_r)^2 + \sigma_i^2} , \ \sigma_i \equiv Im(\sigma) > 0$$

$$\mathcal{L}_{M}(\sigma) = \frac{\sigma_{i}}{\pi} \sum_{\mu}^{M} \frac{|\langle \mu | \hat{O} | i \rangle|^{2}}{(\omega_{\mu} - \sigma_{r})^{2} + \sigma_{i}^{2}}$$

$$\Rightarrow |\mathcal{L}(\sigma) - \mathcal{L}_{M}(\sigma)| < \varepsilon_{M}$$

• smaller $\sigma_i \Rightarrow$ better resolution, slower convergence

LSR: Lanczos sum rule method

The analogous I_M is not guaranteed to converge as \mathcal{L}_M .

LSR: Lanczos sum rule method

The analogous I_M is not guaranteed to converge as \mathcal{L}_M . Let us **assume**

$$g(\omega) = \frac{\sigma_i}{\pi} \int d\sigma_r \frac{h(\sigma)}{(\omega - \sigma_r)^2 + \sigma_i^2}$$

The analogous I_M is not guaranteed to converge as \mathcal{L}_M . Let us **assume**

$$g(\omega) = \frac{\sigma_i}{\pi} \int d\sigma_r \frac{h(\sigma)}{(\omega - \sigma_r)^2 + \sigma_i^2}$$

$$I = \int d\omega \int d\sigma_r S(\omega) \frac{\sigma_i}{\pi} \frac{h(\sigma)}{(\omega - \sigma_r)^2 + \sigma_i^2}$$

$$= \int d\sigma_r \mathcal{L}(\sigma)h(\sigma)$$

$$|I - I_M| \leq \varepsilon_M \int d\sigma_r |h(\sigma)|$$

The analogous I_M is not guaranteed to converge as \mathcal{L}_M . Let us **assume**

$$g(\omega) = \frac{\sigma_i}{\pi} \int d\sigma_r \frac{h(\sigma)}{(\omega - \sigma_r)^2 + \sigma_i^2}$$

$$I = \int d\omega \int d\sigma_r S(\omega) \frac{\sigma_i}{\pi} \frac{h(\sigma)}{(\omega - \sigma_r)^2 + \sigma_i^2}$$

$$= \int d\sigma_r \mathcal{L}(\sigma)h(\sigma)$$

$$|I - I_M| \leq \varepsilon_M \int d\sigma_r |h(\sigma)|$$
Formally:
$$h(\sigma) = \frac{1}{2\pi} \int dk \ e^{\sigma_i |k|} \tilde{g}(\mathbf{k}) e^{-ik\sigma_r}$$

Efros, Phys. At. Nucl. (1999)

The applicability depends on the form of $g(\omega)$. For example:

$$g(\omega) = \frac{\beta}{\pi} \frac{1}{(\omega - \omega_0)^2 + \beta^2} \xrightarrow{\beta \to 0} \delta(\omega - \omega_0),$$

The applicability depends on the form of $g(\omega)$. For example:

$$g(\omega) = \frac{\beta}{\pi} \frac{1}{(\omega - \omega_0)^2 + \beta^2} \xrightarrow{\beta \to 0} \delta(\omega - \omega_0),$$

$$h(\sigma) = \frac{\beta - \sigma_i}{\pi} \frac{1}{(\sigma_r - \omega_0)^2 + (\beta - \sigma_i)^2}$$
, only for $\beta > \sigma_i > 0$

 \Rightarrow If $q(\omega)$ has narrow features, σ_i needs to be small \Rightarrow harder to converge

The applicability depends on the form of $g(\omega)$. For example:

$$g(\omega) = \frac{\beta}{\pi} \frac{1}{(\omega - \omega_0)^2 + \beta^2} \xrightarrow{\beta \to 0} \delta(\omega - \omega_0),$$

$$h(\sigma) = \frac{\beta - \sigma_i}{\pi} \frac{1}{(\sigma_r - \omega_0)^2 + (\beta - \sigma_i)^2}, \text{ only for } \beta > \sigma_i > 0$$

 \Rightarrow If $g(\omega)$ has narrow features, σ_i needs to be small \Rightarrow harder to converge

- The LSR method uses Lanczos to obtain I_M (NND et al., PRC'14)
 - 1. without solving $S(\omega)$
 - 2. efficiently and accurately
 - 3. with rapid convergence (generalizes similar methods as in:

Haxton et al., PRC'05; Gazit et al., PRC'06; Stetcu et al., PLB'08, PRC'09)

23 / 25

ullet For example, for the dipole response, calculated with $M\sim 10^5$, we get

NND, Barnea, Ji, and Bacca, PRC (2014)

Methods

Summary	The LIT & LSR Methods can be used with any bound-state method to
	obtain dynamic observables (e.g., in the nuclear continuum)

- Precise nuclear calculations are crucial in many high-profile efforts, e.g. Application ν -less $\beta\beta$ decay; searches for EDMs; etc. Particularly, nuclear corrections are the bottleneck in μA spectroscopy.
- Results For A = 3.4 we reduced the uncertainties in these corrections from $\sim 20\%$ to 4-6% as required for ongoing experiments.
 - We use the LSR method to calculate the relevant sum-rules.
 - We proved its applicability using the LIT method. The LIT method has been successfully applied to calculate many EW-induced reactions. Some applications have yet to be demonstrated.
- LIT & LSR were applied with Coupled-Cluster for calculations in: Motivation ⁴He, ^{16,22}O, ^{40,48}Ca... (G. Hagen et al., PRC'14; PRC'16; Nature'16;...)

Canada's national laboratory for particle and nuclear physics and accelerator-based science

BACK UP

Hamiltonian for muonic atoms

$$H = H_{nucl} + H_{\mu} + \Delta H$$

$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Corrections to the point Coulomb from protons

$$\Delta H = \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\mathbf{r} - \mathbf{R}_{i}|} \right)$$

• Evaluate inelastic effects of ΔH on muonic spectrum in 2^{nd} -order perturbation theory

$$\delta_{\rm pol} = \sum_{N \neq N_0, \mu} \langle N_0 \mu_0 | \Delta H | N \mu \rangle \frac{1}{E_{N_0} - E_N + \epsilon_{\mu_0} - \epsilon_{\mu}} \langle N \mu | \Delta H | \mu_0 N_0 \rangle$$

 $|\mu_0\rangle$: muon wave function for 2S/2P state

Systematic contributions to nuclear polarization

$$\delta_{NR}$$
 Non-Relativistic limit

$$\delta_L + \delta_T$$
 Longitudinal and Transverse **relativistic** corrections

 δ_C Coulomb distortions

 δ_{NS} Corrections from finite Nucleon Size

• Neglect Coulomb interactions in the intermediate state

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of

$$\eta \equiv \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of

$$\eta \equiv \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

- ullet $|R-R'| \Longrightarrow$ "virtual" distance the proton travels in 2γ exchange
- ullet uncertainty principal $|m{R}-m{R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of

$$\eta \equiv \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

- $|R-R'| \Longrightarrow$ "virtual" distance the proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$$

$$oxed{P_{NR}(\omega,oldsymbol{R},oldsymbol{R}')\simeq rac{m_r^3(Zlpha)^5}{12}\sqrt{rac{2m_r}{\omega}}\left[|oldsymbol{R}-oldsymbol{R}'|^2-rac{\sqrt{2m_r\omega}}{4}|oldsymbol{R}-oldsymbol{R}'|^3+rac{m_r\omega}{10}|oldsymbol{R}-oldsymbol{R}'|^4
ight]}$$

$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \sim \eta^2 + \eta^3 + \eta$$

$$\delta_{NR} = \boldsymbol{\delta_{NR}^{(0)}} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$$

• $\delta_{NR}^{(0)} \propto \eta^2$

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{0.05}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

- $S_{D_1}(\omega) \Longrightarrow$ electric dipole response function [$\hat{D}_1 = R \, Y_1(\hat{R})$]
- ullet $\delta_{D1}^{(0)}$ is the dominant contribution to $\delta_{
 m pol}$
- Rel. and Coulomb corrections added at this order

$$\delta_{NR} = \delta_{NR}^{(0)} + \boldsymbol{\delta_{NR}^{(1)}} + \delta_{NR}^{(2)}$$

• $\delta_{NR}^{(1)} \propto \eta^3$

$$\delta_{NR}^{(1)} = \delta_{R3pp}^{(1)} + \delta_{Z3}^{(1)}$$

$$\delta_{R3pp}^{(1)} = -\frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle$$

$$\delta_{Z3}^{(1)} = \frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \rho_0(\mathbf{R}) \rho_0(\mathbf{R}')$$

- $\delta^{(1)}_{R3pp} \Rightarrow$ 3rd-order proton-proton correlation
- $\delta_{Z3}^{(1)} \Longrightarrow 3rd$ Zemach moment

$$\delta_{NR} = \delta_{NR}^{(0)} + \boldsymbol{\delta_{NR}^{(1)}} + \delta_{NR}^{(2)}$$

• $\delta_{NR}^{(1)} \propto \eta^3$

$$\delta_{NR}^{(1)} = \delta_{R3pp}^{(1)} + \delta_{Z3}^{(1)}$$

$$\delta_{R3pp}^{(1)} = -\frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle
\delta_{Z3}^{(1)} = \frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') = \frac{m_r^4}{24} (Z\alpha)^5 \langle \mathbf{r}^3 \rangle_{(2)}$$

- $\delta^{(1)}_{R3pp} \Rightarrow$ 3rd-order proton-proton correlation
- $\delta_{Z3}^{(1)} \Longrightarrow$ 3rd Zemach moment cancels *elastic* Zemach moment of finite-size corrections c.f. Pachucki '11 & Friar '13 (μ D) \Longrightarrow $\delta_{TPE} \equiv |\delta_{Zem} + \delta_{pol}|$

$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \boldsymbol{\delta_{NR}^{(2)}}$$

• $\delta_{NR}^{(2)} \propto \eta^4$

$$\delta_{NR}^{(2)} = \frac{m_r^5}{18} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{\omega}{2m_r}} \left[S_{R^2}(\omega) + \frac{16\pi}{25} S_Q(\omega) + \frac{16\pi}{5} S_{D_1D_3}(\omega) \right]$$

- \bullet $S_{R^2}(\omega) \Longrightarrow$ monopole response function
- $S_Q(\omega) \Longrightarrow$ quadrupole response function
- $S_{D_1D_3}(\omega) \Longrightarrow$ interference between D_1 and D_3 [$\hat{D}_3 = R^3Y_1(\hat{R})$]

	$\mu^3 \text{He}^+$			μ^3 H		
Error type	$\delta_{ m pol}^A$	$\delta_{\mathrm{Zem}}^{A}$	$\delta_{ ext{TPE}}^{A}$	$\delta_{ m pol}^A$	$\delta_{\mathrm{Zem}}^{A}$	$\delta_{ ext{TPE}}^{A}$
Numerical	0.4	0.1	0.1	0.1	0.0	0.1
Nuclear model	1.5	1.8	1.7	2.2	2.3	2.2
ISB	2.0	0.2	0.5	0.9	0.2	0.6
Nucleon size	1.6	1.5	0.6	0.6	1.3	0.0
Relativistic	0.6	-	1.5	1.4	-	0.3
Coulomb	1.2	-	0.3	0.3	-	0.2
Multipole expansion	2.0	-	0.6	2.0	-	1.4
Higher $Z\alpha$	1.5	-	0.4	0.7	-	0.5
Magnetic MEC	0.4	-	0.1	0.3	-	0.2
Total	4.1%	2.3%	2.5%	3.6%	2.7%	2.7%