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Relevant	energy	scales	in	even-even	nuclei
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⌘
� qd2

4

⇣
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⌘
(7)

I⇡ I ⇡ (8)

E(4+)

E(2+)

E(4+)

E(2+)
⇡ 2

E(4+)

E(2+)
⇡ 10

3
(9)

B(E2; I⇡i ! I⇡g )exp ⌧ B(E2; I⇡i ! I⇡g )BH (10)

B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (11)

Q(I⇡) = 0 (12)

1

⇠ ! ⇤ (1)

⇠ ⇠ 100keV ! ⇠ 1000keV ! ⇠ 500keV ⇤ ⇠ 2000keV ⇤ ⇠ 1500keV
(2)

⇠

!
⌧ 1

!

⇤
⌧ 1

⇠

!
⇠ 1

10

!

⇤
⇠ 1

2

!

⇤
⇠ 1

3
�E ⇠

⇣!
⇤

⌘
! �E ⇠ !

(3)
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⌘
(7)

I⇡ I ⇡ (8)

E(4+)

E(2+)

E(4+)

E(2+)
⇡ 2

E(4+)

E(2+)
⇡ 10

3
(9)

B(E2; I⇡i ! I⇡g )exp ⌧ B(E2; I⇡i ! I⇡g )BH (10)

B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (11)



The	states	are	constructed	as	phonon	
excitations	of	the	even-even	ground	state	

Boson	quadrupole	operators

Hamiltonian	in	terms	of	boson	quadrupole	
operators

,

and

rank-two	tensors

Most	simple	rotational-invariant	Hamiltonian

,

2

that govern the collective vibrations of an even-
even nucleus. This EFT is based on the usual
linear Wigner-Weyl representation of rotational
symmetry and can be contrasted to an EFT
for deformed nuclei, which is based on the non-
linear Nambu-Goldstone realization of the rota-
tional symmetry [31]. Based on a power count-
ing we systematically construct the Hamilto-
nian and electromagnetic operators. Another
interesting aspect of this EFT approach is the
simultaneous description of the even-even and
neighboring odd-mass nuclei; consequently, ob-
servables in the even-even nucleus are related
to observables in the odd-mass system. These
relations can be confronted with experimental
data. In this work, we will compute electric
quadrupole (E2) and magnetic dipole (M1) ob-
servables for odd-mass isotopes of rhodium and
silver. This is also interesting with view on re-
cent g factor measurements in this region of
the nuclear chart [48, 49]. The paper is or-
ganized as follows. In Section II, we present
the EFT framework within which the even-
even/odd-mass nuclei will be described, estab-
lish a power counting and describe energy spec-
tra at next-to-next-to-leading order (NNLO).
Sections III and IV are dedicated to the study
of moments and transitions of the E2 and M1
operators, respectively. In Section V we discuss
the possible extension of the EFT to the more
complicated case posed by cadmium isotopes.
Finally, in Section VI we present our summary.

II. ODD-MASS VIBRATIONAL NUCLEI

Certain even-even nuclei (such as isotopes of
Cd, Ru, and Te) exhibit low-energy states that
resemble those of a five-dimensional quadrupole
oscillator. In these nuclei, the vibrational fre-
quency ! ⇡ 0.6 MeV is the energy scale of in-
terest, and the picture of a quadrupole vibrator
breaks down at an energy ⇤ ⇡ 2-3 MeV, i.e.
around the three-phonon level. The breakdown
scale ⇤ is associated with neglected microscopic
(fermionic) degrees of freedom and is of similar
size as the pairing gap. Thus, ! ⌧ ⇤ holds,
and this separation of scale has been exploited

in Ref. [36] to construct an EFT for nuclear vi-
brations.

The spectra of certain odd-mass neighbors
of vibrational nuclei are relatively simple and
suggest that these result from coupling a j⇡ =
1/2� fermion to the even-even nucleus. Exam-
ples we consider in this paper are 99,101,103Rh
(Z = 45) and 105,107,109,111Ag (Z = 47) as
a proton coupled to 98,100,102Ru (Z = 44)
and 104,106,108,110Pd (Z = 46), respectively, or
107,109,111Ag as a proton-hole in 108,110,112Cd
(Z = 48). These cases are particularly simple
because one deals with a j⇡ = 1/2� degree of
freedom. We note here that the odd-mass nuclei
considered in this work also exhibit very low-
lying (100 keV or less) states with positive par-
ity. As a single fermion cannot undergo parity-
changing transitions, the positive-parity states
can be neglected in the description of low-lying
negative-parity states in the odd-mass nuclei.

Could one also attempt to describe, for in-
stance, 108,110,112Cd in terms of two protons
added to 106,108,110Pd, respectively? In such
an EFT approach, the low-lying positive-parity
states of 107,109,111Ag would also need to enter
the description. The calculation would be non-
perturbative (because of the near degeneracy of
states with positive and negative parities in the
odd-mass nucleus), and a significant number of
fermionic two-body-matrix elements would en-
ter as low energy constants (LECs). It is thus
unclear whether such an EFT approach would
be profitable.

A. Hamiltonian

Before we turn to the odd-mass nuclei, we
briefly review some aspects of the EFT for nu-
clear vibrations in even-even nuclei [36]. The
relevant degrees of freedom are quadrupole op-
erators d†µ and dµ with µ = �2,�1, ..., 2 that
create and annihilate a phonon, respectively.
They fulfill the usual boson commutation rela-
tions
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two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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ĤNLO = ĤLO + g!N̂ + gNN̂
2 + gv⇤̂

2 + gI Î
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Spectrum	up	to	three-phonon	excitations
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✓
N!

⇤

◆2

!

(21)

HLO ⇠ N! HLO ⇠ ⇤ (22)

�ELO ⇠
✓
N!

⇤

◆2

! �ENLO ⇠
✓
N!

⇤

◆3

! (23)

X = X0

1X

n

cn"
n " ⌘ N!

⇤
�Xk = X0

k+MX

n=k+1

cn"
n c2 =
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and

HNNLO ⌘ gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (20)

While the term �Sn̂ in Eq. (17) sets the overall
binding with respect to the ground-state of the
vibrating core, it does not contain any spectro-
scopic information. We will therefore neglect
this term in what follows. The LO Hamilto-
nian (18) is that of a harmonic quadrupole vi-
brator, and energies are of the order !. Higher-
order contributions to the Hamiltonian are most
interesting. The NLO Hamiltonian (19) ac-
counts for e↵ects introduced by the phonon-
fermion couplings. We note that the size of
the boson-fermion interaction cannot be deter-
mined on theoretical grounds but must rather
be based on data. The empirical inspection of
spectra suggests that these phonon-fermion cou-
plings are a fraction of the scale !. We approxi-
mate this scale as order !2/⇤ and thereby avoid
the introduction of a new small parameter. Be-
cause of this perturbative coupling we can as-
sociate low-lying states in certain odd-mass nu-
clei with the spectra in the neighboring even-
even nuclei. The NNLO Hamiltonian (20) in-
volves phonon-phonon interactions that account
for anharmonicities in the even-even nucleus.
We remind the reader that these terms are of
order !3/⇤2 and have been discussed in detail
in Ref. [36].

Let us discuss the Hilbert space. The states
of the odd nucleus are products of the boson
quadrupole states and fermion states of the j =
1/2 orbital. As usual, the vacuum |0i fulfills

dµ|0i = 0 = a⌫ |0i. (21)

The boson states of the quadrupole vibrator
are created from the vacuum by the succes-
sive application of quadrupole creation opera-
tors. These states are denoted as

|N↵vJµi. (22)

Here N is the number of phonons, v is the se-
niority, J and µ are the angular momentum and
its projection onto the z-axis, respectively, while
↵ represents an additional quantum number.
This quantum number is only needed above the

two-phonon level and therefore not needed for
the low-energy physics we are interested in. We
will omit it in what follows. For details on the
construction of these states we refer the reader
to Ref. [9]. The single-fermion states are

| 12⌫i ⌘ a†⌫ |0i. (23)

Normalized states of the odd-mass nucleus with
total spin I and projection M are

|IM ;N↵vJ ; 1
2 i ⌘

�|N↵vJi ⌦ | 12 i
�(I)
M

=
X

µ⌫

CIM
Jµ 1

2

⌫ |N↵vJµi| 12⌫i. (24)

The Hamiltonian (17) is diagonal in the basis
states (24) with eigenvalues

E = ELO + ENLO + ENNLO, (25)

with

ELO = !1N, (26)

ENLO = !2Nn+
gJj
2


I(I + 1)� J(J + 1)� 3

4

�

(27)
and

ENNLO = gNN2+gvv(v+3)+gJJ(J+1). (28)

We remind the reader that we neglected the sep-
aration energy S, i.e., the ground-state ener-
gies of the even-even nucleus and of the odd-
mass nucleus are set to zero. Figure 1 shows a
schematic plot of the NLO energy spectrum (25)
up to the two-phonon level. States are labeled
by their spin and parity. Even-even states,
shown as long red lines, have integer spins
and positive parity. Odd-mass states, shown
as short blue lines, have half-integer spins and
the parity of the fermion’s orbital. (Odd-mass
states considered in what follows all have neg-
ative parities.) Energies are chosen in units of
!1, and the LECs !2 and gJj are small frac-
tions of this LEC. We see how the term propor-
tional to !2 shifts the energies while the term
proportional to gJj splits even-even states with
finite spins into doublets in the odd-mass neigh-
bor. The centroids from the shift are shown as
crosses in Fig. 1.
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We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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2 + gJjĴ · ĵ Ĵ ĵ (26)

3

d†µ dµ µ = 0,±1,±2
⇥
dµ, d

†
⌫

⇤
= �µ⌫ (18)
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ĤLO = !d† · d̃ = !N̂ d̃µ = (�1)µd�µ (19)

I⇡ = 2+ I⇡ = 0+, 2+, 4+ I⇡ = 0+, 2+, 3+, 4+, 6+ ⇤ ⇠ 3! (20)

C2d
4 ⇠ ! =) C2 ⇠

⇣!
⇤

⌘2

! d d ⇠
r

⇤

!
d ⇠

p
N
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FIG. 1. (Color online) NLO spectrum for the
fermion in a j = 1/2 orbital coupled to a quadrupole
vibrator up to the two-phonon level in arbitrary
units. The states labeled as I⇡ are displayed as long
red and short blue lines for even-even and odd-mass
nuclei, respectively. The centroids of the I = J ± j
odd-mass states are shown as blue crosses.

B. Uncertainty quantification

EFTs provide us with the opportunity to
quantify theoretical uncertainties. While the
power counting allows one to estimate uncer-
tainties in EFTs, quantified uncertainties re-
sult from (testable) assumptions one makes
about the distribution of the LECs [40] in
form of priors. Employing Bayesian statistics
(and marginalizing) over unknown parameters
included in these priors yields degree-of-belief
(DOB) intervals with a statistical meaning. In
this section, we closely follow Ref. [36] and
chose log-normal priors for the LECs’ distribu-
tion functions.

The energies of the states below the break-
down scale can be written as an expansion of
the form

E(I⇡) = !1

1X

i

ci(I
⇡)"i (29)

with

" ⌘ N
!1

⇤
. (30)

In our case

!1

⇤
⇡ 1

3
. (31)

If the expansion is truncated at order O("2), a
comparison with the NNLO spectrum (25) al-
lows us to identify

c0(I
⇡) ⌘ ELO(I⇡)

!1
, (32)

c1(I
⇡) ⌘ ENLO(I⇡)

"!1
(33)

and

c2(I
⇡) ⌘ ENNLO(I⇡)

"2!1
(34)

From the power counting one expects these co-
e�cients to be of order O(1).

Figure 2 shows the cumulative distributions
of the c1 and c2 coe�cients for the energies of
states below the breakdown scale in an ensemble
containing the data of all studied Pd and Ag
nuclei. These distributions, with means µ1 and
µ2, respectively, can be approximated by the
Gaussian prior

pr(G)(c̃i|c) = 1p
2⇡sc

e�
c̃2i

2s2c2 with s =
2

3
(35)

for the expansion coe�cient ci = c̃i + µi. Here,
µi ⌘ ci is the mean value of the ci. The param-
eter c, associated with the width of the distribu-
tion, is not taken from Fig. 2. Instead, we make
the assumption that c is log-normal distributed
according to

pr(c) =
1p
2⇡�c

e�
log

2 c

2�2 . (36)

The log normal distribution is consistent with
the EFT expectation that LECs are of natu-
ral size, i.e. that the coe�cient c is of order
one [37]. Given the priors (35) and (36), one
calculates the probability distribution function
(PDF) for ci by marginalizing over the param-
eter c and finds

p(ci � µ) =

1Z

0

dcpr(G)(ci � µi|c)pr(c). (37)

*Cacciari,	Houdeau;	Nucl.	J.	High	Energy	Phys.	09 (2011)	039
*Furnstahl,	et	al.;	J.	Phys.	G	42,	034028	(2015)
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ĤNLO = ĤLO + g!N̂ + gNN̂
2 + gv⇤̂

2 + gI Î
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FIG. 1. (Color online) NLO spectrum for the
fermion in a j = 1/2 orbital coupled to a quadrupole
vibrator up to the two-phonon level in arbitrary
units. The states labeled as I⇡ are displayed as long
red and short blue lines for even-even and odd-mass
nuclei, respectively. The centroids of the I = J ± j
odd-mass states are shown as blue crosses.

B. Uncertainty quantification

EFTs provide us with the opportunity to
quantify theoretical uncertainties. While the
power counting allows one to estimate uncer-
tainties in EFTs, quantified uncertainties re-
sult from (testable) assumptions one makes
about the distribution of the LECs [40] in
form of priors. Employing Bayesian statistics
(and marginalizing) over unknown parameters
included in these priors yields degree-of-belief
(DOB) intervals with a statistical meaning. In
this section, we closely follow Ref. [36] and
chose log-normal priors for the LECs’ distribu-
tion functions.

The energies of the states below the break-
down scale can be written as an expansion of
the form
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If the expansion is truncated at order O("2), a
comparison with the NNLO spectrum (25) al-
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and
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From the power counting one expects these co-
e�cients to be of order O(1).

Figure 2 shows the cumulative distributions
of the c1 and c2 coe�cients for the energies of
states below the breakdown scale in an ensemble
containing the data of all studied Pd and Ag
nuclei. These distributions, with means µ1 and
µ2, respectively, can be approximated by the
Gaussian prior

pr(G)(c̃i|c) = 1p
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for the expansion coe�cient ci = c̃i + µi. Here,
µi ⌘ ci is the mean value of the ci. The param-
eter c, associated with the width of the distribu-
tion, is not taken from Fig. 2. Instead, we make
the assumption that c is log-normal distributed
according to
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The log normal distribution is consistent with
the EFT expectation that LECs are of natu-
ral size, i.e. that the coe�cient c is of order
one [37]. Given the priors (35) and (36), one
calculates the probability distribution function
(PDF) for ci by marginalizing over the param-
eter c and finds
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2
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✓
N!

⇤

◆2

!

(21)

HLO ⇠ N! HLO ⇠ ⇤ (22)

�ELO ⇠
✓
N!

⇤

◆2

! �ENLO ⇠
✓
N!

⇤

◆3

! (23)

X = X0

1X

n

cn"
n " ⌘ N!

⇤
�Xk = X0

k+MX

n=k+1

cn"
n c2 =
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Most	general	rank-two	tensor

From	the	power	counting

LO	term:	
•One	LEC
•Phonon-annihilating	transition	strengths

NLO	term:
•One	LEC
•Phonon-conserving	transition	strengths
•Static	E2	moments

E2	operator

4

State µ EFT
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States	coupled	by	the	E2	operator
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TABLE III. Experimental and predicted reduced matrix elements of the E2 operator for phonon-annihilating transitions in the
even-even nuclei listed in Table I. All quantities are given in

p
W.u.. Experimental and predicted values are on the left and

right of each column, respectively.

Nucleus |Q
0

| |h0
1

||Q̂||2
1

i| |h2
1

||Q̂||0
2

i| |h2
1

||Q̂||2
2

i| |h2
1

||Q̂||4
1

i|
62Ni 3.4(11) 7.8 7.5(25) 4.8(16) 8.6(2) 10.7(36) 13.7(2) 14.3(48)
64Ni 3.4(11) 6.2 7.6(25) 3.3(9) 4.8(16) 10.7(36) 7.8(1) 14.3(48)
66Zn 4.3(14) 9.3 9.6(32) 6.0(20) 12.8(5) 13.5(45) 12.7(1) 18.1(60)
68Zn 3.9(13) 8.6 8.7(29) 2.3(2) 5.5(18) 12.0(1) 12.3(41) 9.9(1) 16.5(55)
70Ge 4.5(15) 10.2 10.0(33) 6.9(5) 6.3(21) 17.9(3) 14.2(47) 15.0 19.0(63)
78Se 6.2(21) 12.9 13.9(46) 1.1(1) 8.8(29) 10.5(1) 19.7(66) 21.1(1) 26.5(88)
80Se 5.3(17) 11.1 11.8(39) 2.6(2) 7.4(25) 9.6 16.6(55) 17.8 22.3(74)
78Kr 7.2(24) 18.4(1) 16.0(53) 6.9(3) 10.1(34) 5.3(2) 22.7(76) 28.1(1) 30.4(101)
80Kr 5.8(19) 13.7(1) 12.9(43) 8.1(27) 11.2(2) 18.2(61) 25.1(2) 24.4(81)
82Kr 4.1(14) 10.3 9.2(31) 3.9(6) 5.8(19) 13.0(43) 17.0(3) 17.5(58)
98Mo 0.106 9.9 9.8(15) 6.2(29) 12.6(2) 13.8(29) 19.5 18.6(29)
100Mo 0.146 13.6 13.4(20) 9.6(2) 8.4(40) 16.0(2) 18.9(40) 24.9(1) 25.3(40)
100Ru 0.122 13.3 11.2(17) 5.9(4) 7.1(33) 12.4 15.9(33) 21.4(1) 21.3(33)
102Ru 0.135 15.0 12.2(18) 5.9(5) 7.7(37) 12.6(2) 17.3(37) 24.4(2) 23.2(37)
104Ru 0.128 17.0 11.5(17) 5.0(3) 7.3(34) 1.7(1) 16.3(34) 27.3(2) 21.8(34)
104Pd 0.114 13.6(1) 10.3(15) 3.6(2) 6.5(31) 10.4(1) 14.5(31) 21.0(2) 19.5(31)
106Pd 0.143 14.9 12.8(19) 6.6(7) 8.1(38) 14.0(1) 18.1(38) 26.1(2) 24.2(38)
108Pd 0.158 15.7 13.9(21) 7.2(3) 8.8(42) 18.8(1) 19.7(42) 25.6(2) 26.5(42)
110Pd 0.156 16.7 13.7(20) 6.1(3) 8.7(41) 14.8(1) 19.4(41) 28.5(1) 26.0(41)
106Cd 0.109 11.4 9.7(14) 6.1(29) 7.4(2) 13.7(29) 20.3(1) 18.4(29)
108Cd 0.112 11.5 9.9(15) 6.3(30) 9.2(3) 14.0(30) 19.2(2) 18.8(30)
110Cd 0.120 11.6 10.5(16) 6.7(31) 12.2(2) 14.9(31) 19.4(2) 20.0(31)
112Cd 0.135 12.3 11.7(17) 7.1(10) 7.4(35) 14.0(2) 16.5(35) 23.8(2) 22.1(35)
114Cd 0.124 12.5(1) 10.6(16) 5.2(2) 6.7(32) 10.5(3) 15.0(32) 23.6(1) 20.1(32)
116Cd 0.110 12.9 9.4(14) 0.9(1) 5.9(28) 11.2(4) 13.3(28) 22.4(3) 17.8(28)
112Sn 0.066 8.6 5.7(9) 3.6(17) 2.6(1) 8.1(17) 7.1(1) 10.9(17)
114Sn 0.083 8.7(2) 7.1(11) 4.7(8) 4.5(21) 10.1(21) 7.3 13.5(21)
116Sn 0.086 7.9 7.3(11) 4.2(3) 4.6(22) 6.2(1) 10.3(22) 18.5(6) 13.9(22)
118Sn 0.078 7.8 6.6(10) 4.4(3) 4.2(20) 5.9(1) 9.4(20) 12.4(1) 12.6(20)
120Sn 0.075 7.5 6.3(9) 3.5(2) 4.0(19) 7.7(3) 8.8(19) 9.6(1) 11.9(19)
122Sn 0.080 7.3 6.6(10) 4.2(20) 9.7(1) 9.4(20) 9.5(1) 12.6(20)
124Sn 0.071 6.7 5.9(9) 3.7(17) 9.3 8.3(17) 6.6 11.1(17)

static moments and phonon-conserving transitions. From the power counting established in Ref. [1] it is expected for
both terms scale similarly at the breakdown ⇤. Then

Q
0

r

⇤

!
⇤⇠ Q

1

⇤

!
or

Q
1

Q
0

EFT⇠ 0.58(+42

�25

). (40)

Let us start testing the EFT against data on phonon-annihilating transitions. The LEC Q
0

is fixed independently for
each nucleus via �2 fits employing all available data from Refs. [5? ? ? ? ? ? ? ? ? ? –16]. It is important to
mention that the B(E2, 0

2

! 2
1

) and B(E2, 2
2

! 2
1

) values in 64Ni and 66Zn, respectively, were divided by a factor
of ten (I’m under the impression that the data for these transitions in Refs. [? ? ] might have typos). In Table III
we compare experimental and predicted matrix elements involved in phonon-annihilating transitions.

Instead of employing data on the E2 static moments or phonon-conserving transition strengths to fit the LEC Q
1

,
we will employ Eq. (40) to estimate the size of the static moments and matrix elements involved in phonon-conserving
transitions, and compare them against data when available. These results are listed in Table IV. Data on the E2
static moments were taken from Refs. [17? , 18].

LO	matrix	elements	for	phonon-annihilating	E2	transitions	in	[W.	u.]

LEC	fitted	to	even-even	and	odd-mass	nuclei	E2	transitions	strengths



From	the	power	counting

Uncertainty	due	to	LEC

LO	E2	moments 8

TABLE III. Predicted and experimental E2 static moments and matrix elements of the E2 operator associated with phonon-
conserving transitions of the even-even nuclei involved in the �-decays listed in Table I. Experimental and predicted values are
on the left and right of each column.

Nucleus |Q
1

| |Q(2
1

)| |Q(2
2

)| |Q(4
1

)| |h0
2

||Q̂||2
2

i| |h2
2

||Q̂||4
1

i|
62Ni 0.071(+52

�30

) 0.050(120) 0.121(+88

�51

) 0.052(+38

�22

) 0.241(+177

�102

) 3.7(+27

�16

) 3.2(+27

�13

)
64Ni 0.055(+40

�23

) 0.400(200) 0.093(+68

�39

) 0.040(+29

�17

) 0.186(+136

�79

) 2.8(+21

�12

) 2.4(+18

�10

)
64Zn 0.082(+60

�35

) 0.140(20) 0.139(+102

�59

) 0.059(+44

�25

) 0.278(+203

�117

) 1.1(7) 4.2(+31

�18

) 3.6(+26

�15

)
66Zn 0.089(+65

�37

) 0.081(13) 0.150(+110

�63

) 0.064(+47

�27

) 0.300(+220

�127

) < 4.7 4.4(+33

�19

) 3.8(+28

�16

)
68Zn 0.072(+53

�31

) 0.106(16) 0.123(+90

�52

) 0.053(+38

�22

) 0.245(+180

�104

) 8.9(3) 3.6(+26

�15

) 7.3(1) 3.1(+22

�13

)
70Zn 0.085(+62

�36

) 0.240(30) 0.144(+106

�61

) 0.062(+45

�26

) 0.289(+211

�122

) 4.1(+30

�17

) 3.5(+26

�15

)
70Ge 0.111(+81

�47

) 0.030(60) 0.188(+138

�79

) 0.081(+59

�34

) 0.376(+275

�159

) 8.9(2) 5.4(+39

�23

) 12.4(4) 4.6(+34

�19

)

0.090(60)
78Se 0.0106(+78

�45

) 0.260(90) 0.180(+132

�76

) 0.077(+56

�33

) 0.360(+263

�152

) 4.8(+35

�20

) 4.1(+30

�17

)
80Se 0.099(+73

�42

) 0.310(70) 0.169(+123

�71

) 0.072(+53

�31

) 0.337(+247

�143

) 4.4(+32

�19

) 3.8(+28

�16

)
78Kr 0.0152(+111

�64

) 0.258(+189

�109

) 0.111(+81

�47

) 0.516(+378

�218

) 6.8(+50

�29

) 5.9(+43

�25

)
80Kr 0.142(+104

�60

) 0.240(+176

�101

) 0.103(+75

�43

) 0.480(+351

�203

) 6.2(+46

�26

) 5.4(+39

�23

)
82Kr 0.106(+78

�45

) 0.180(+132

�76

) 0.077(+57

�33

) 0.361(+264

�152

) 4.6(+34

�19

) 4.0(+29

�17

)
98Mo 0.131(+96

�55

) 0.260(90) 0.222(+162

�94

) 0.095(+70

�40

) 0.444(+325

�187

) 3.4(1) 4.6(+34

�19

) 11.6(1) 4.0(+29

�17

)
100Mo 0.181(+133

�77

) 0.250(70) 0.307(+225

�130

) 0.132(+96

�56

) 0.614(+449

�259

) 5.2(1) 6.9(+50

�29

) 5.9(+43

�25

)
100Ru 0.152(+111

�64

) 0.440(40) 0.258(+189

�109

) 0.111(+81

�47

) 0.516(+378

�218

) 5.8(+42

�24

) 5.0(+36

�21

)

0.270(70)
102Ru 0.168(+123

�71

) 0.630(40) 0.285(+209

�120

) 0.122(+89

�52

) 0.570(+417

�241

) 6.3(+46

�27

) 5.4(+40

�23

)

0.340(30)
104Ru 0.160(+117

�68

) 0.780(70) 0.272(+199

�115

) 0.116(+85

�49

) 0.543(+398

�230

) 5.9(+43

�25

) 5.1(+37

�21

)

0.200(120)
104Pd 0.143(+105

�60

) 0.460(110) 0.242(+177

�102

) 0.104(+76

�44

) 0.485(+355

�205

) 5.3(+39

�22

) 4.5(+33

�19

)
106Pd 0.180(+132

�76

) 0.510(70) 0.305(+223

�129

) 0.394(45) 0.131(+96

�55

) 0.769(83) 0.610(+447

�258

) 4.3(8) 6.6(+48

�28

) 2.5(14) 5.6(+41

�24

)
108Pd 0.199(+146

�84

) 0.580(40) 0.337(+247

�143

) 0.553(68) 0.145(+106

�61

) 0.588(83) 0.674(+494

�285

) 6.9(8) 7.2(+53

�30

) 3.3(2) 6.2(+45

�26

)
110Pd 0.198(+145

�84

) 0.470(30) 0.335(+245

�142

) 0.144(+105

�61

) 0.670(+491

�283

) 7.8(20) 7.1(+52

�30

) 9.1(4) 6.1(+44

�26

)
106Cd 0.136(+100

�58

) 0.280(80) 0.231(+169

�98

) 0.099(+72

�42

) 0.462(+338

�195

) 5.0(+37

�21

) 4.3(+31

�18

)
108Cd 0.142(+104

�60

) 0.450(80) 0.240(+176

�101

) 0.103(+75

�43

) 0.480(+352

�203

) 5.1(+37

�22

) 4.4(+32

�19

)
110Cd 0.152(+111

�64

) 0.400(40) 0.258(+189

�109

) 0.111(+81

�47

) 0.516(+378

�218

) 5.4(+40

�23

) 4.7(+34

�20

)
112Cd 0.171(+125

�72

) 0.370(40) 0.289(+212

�122

) 0.124(+91

�52

) 0.579(+423

�245

) 6.0(+44

�25

) 5.2(+38

�22

)
114Cd 0.157(+115

�66

) 0.348(12) 0.266(+195

�113

) 0.697(38) 0.114(+84

�48

) 0.716(83) 0.532(+390

�225

) 3.0(5) 5.5(+40

�23

) 6.0(1) 4.7(+34

�20

)
116Cd 0.141(+103

�60

) 0.420(40) 0.239(+175

�101

) 0.102(+75

�43

) 0.477(+349

�202

) 4.9(+36

�20

) 4.2(+30

�18

)
112Sn 0.084(+61

�35

) 0.090(100) 0.142(+104

�60

) 0.061(+45

�26

) 0.284(+208

�120

) 3.0(+22

�12

) 2.5(+19

�11

)
114Sn 0.106(+77

�45

) 0.320(30) 0.179(+131

�76

) 0.077(+56

�32

) 0.358(+262

�151

) 3.7(+27

�16

) 3.2(+23

�13

)
116Sn 0.110(+80

�46

) 0.170(40) 0.186(+136

�78

) 0.080(+58

�34

) 0.371(+272

�157

) 3.8(+28

�16

) 3.2(+24

�14

)
118Sn 0.100(+73

�42

) 0.140(100) 0.170(+124

�72

) 0.072(+53

�31

) 0.340(+249

�144

) 3.4(+25

�14

) 2.9(+21

�12

)
120Sn 0.096(+70

�40

) 0.020(70) 0.162(+119

�69

) 0.070(+51

�29

) 0.325(+238

�137

) 3.2(+24

�14

) 2.8(+20

�12

)
122Sn 0.103(+75

�43

) 0.130(100) 0.174(+127

�73

) 0.075(+55

�31

) 0.348(+255

�147

) 3.4(+25

�14

) 2.9(+21

�12

)
124Sn 0.092(+67

�39

) 0.030(130) 0.156(+114

�66

) 0.067(+49

�28

) 0.311(+228

�132

) 3.0(+22

�13

) 2.6(+19

�11

)
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where the symbol
⇤⇠ value must be read as “expected to scale as value at the scale ⇤”. Here ! is the energy of the

vibrational mode. For details we refer the reader to Ref [1].
For the di↵erent terms of the operator (3) we have

C�hd0i
⇤⇠ C�`hd1i ) C�`

⇤⇠ C�

r

!

⇤
or

C�`

C�

EFT⇠ 0.58(+42

�25

) (11)

and

C�hd0i
⇤⇠ C�L`hd2i ) C�L`

⇤⇠ C�
!

⇤
or

C�L`

C�

EFT⇠ 0.33(+25

�14

), (12)

where the symbol
EFT⇠ value must be read as “expected to scale as value within the EFT”. The uncertainties for these

ratios have been naively estimated based on the expectation for the LECs to be of natural size. Through this work
the later statement will be understood as

B ⇠ A ) B 2
"

A

r

!

⇤
, A

r

⇤

!

#

. (13)

We emphasize that these are naive estimates and must be tested. Thus, the observed successive hindering of � decays
from 1+, 2+ and 3+ odd-odd ground states to the 0+

1

, 2+
1

an 2+
2

even-even states reported in Ref. [? ] arises naturally
within the EFT.

C. Sum rules

The total transition strengths are defined by

S± =
X

n=1

|h1+n ||Ô�± ||0+I i|
2, (14)

where the + or � subscripts are employed to reference electron capture or �� processes, respectively. Within the
EFT, the odd-mass excited 1+ states can be either multiphonon or single-particle excitations. In the former case,
and based on the power counting (10), the energies of these excitations and the matrix elements of the operator (3)
between them and the even-even 0+ state of interest scale as

E(1+n+1

)
EFT⇠ E(1+

1

) + n! (15)

and

h1+n+1

||Ô� ||0+i i
EFT⇠ h1+

1

||Ô� ||0+i i
⇣!

⇤

⌘n/2
, (16)

respectively. If a similar scaling is assumed for the single-particle excitations, then the total transition strengths may
be estimated as

S±
EFT⇠ 3C2

�±

X

n=0

⇣!

⇤

⌘n
or

S±
C2

�±

EFT⇠ 4.5(+33

�19

). (17)

Thus,

S� � S
+

EFT⇠ 4.5
⇣

C2

�� � C2

�+

⌘

. (18)

D. C� within the pairing plus quadrupole model

As mentioned in the previous section, the LECs of the operator (3) cannot be calculated within the EFT, and
must be fitted to experimental data. Is it possible to map the reduced matrix elements of interest to those calculated
within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the
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State µ EFT
2+
1

0.79 (2) 0.79 (24)
2+
2

0.71 (10) 0.79 (49)
4+
1

1.8 (4) 1.93 (49)

Q̂ = Q0

⇣
d† + d̃

⌘
+Q1

⇣
d† ⌦ d̃

⌘(2)

�N = ±1 �N = 0,±2 Q0d ⇠ Q1d
2 =) Q1 ⇠

r
!

⇤
Q0

Q1

Q0
⇠ 0.58

Q1

Q0
⇡ 0.47

Q1

Q0
⇡ 0.41

Q1

Q0
⇡ 0.33

Q1

Q0
⇡ 0.42

(27)

B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i

(28)

µ̂LO = µ0Î µ(I⇡) = µ0

r
4⇡

3
CII

II10

p
I(I + 1)

µ(4+) = 2µ(2+)
p
16⇡ 2

p
16⇡

(29)

↵LO ↵NLO (30)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(31)

 0 !  0  ±2 ! e±i2�̃ ±2 (32)

LO	E2	static	moments	for	even-even	first	
excited	states	in	[eb]



Relevant	energy	scales	in	odd-mass	spherical	nuclei	with	½-ground	states
1
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!

⇤
⇠ 1
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�E ⇠

⇣!
⇤

⌘
! �E ⇠ !
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êr v±1 ⌘ ⌥
r

1

2

⇣
✓̇ ± i�̇ sin ✓

⌘
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C0 =
3

⇠
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Q̂NLO = qêr · E� qd1
4

⇣
Î2êr · E+ êr · EÎ2

⌘
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4
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⇡ 10

3
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B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (11)
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4

⇣
Î2êr · E+ êr · EÎ2

⌘
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⇣
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⌘
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3

⇠
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⇣
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⌘
� qd2

4
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⌘
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B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (11)

Q(I⇡) = 0 (12)



From	the	power	counting,	the	NLO	
contribution	to	the	Hamiltonian	is

where

and

Power	counting	for	the	fermion	operators

The	fermion	operators

create	and	annihilate	a	fermion	in	a
orbital

Base	on	the	energy	scales,	the	following	
power	counting	for	fermionic	n-body	
operators	is	proposed

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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IV. M1 OBSERVABLES

The magnetic dipole (M1) operator is a
spherical tensor of rank one. In our EFT, the
simplest rank-one operator is

µ̂µ =µdĴµ + µaĵµ

+
⇣⇣

d† + d̃
⌘
⌦

⇣
µd1Ĵ+ µa1ĵ

⌘⌘(1)

µ
.
(52)

The first and second terms on the right-hand
side of Eq. (52) preserve the phonon number,
and enter in the LO calculation of static M1
moments and phonon-conserving M1 transition
strengths. The last two terms enter in the LO
calculation of phonon-changing M1 transition
strengths.

Experimental data show that the typical size
for the static M1 moment of the even-even 2+1
state is about one nuclear magneton µN . This
observation and the fact that in even-even nuclei

hI||Ĵ||Ii =
p

I(I + 1)(2I + 1), (53)

allow us to estimate the scale for the LEC µd as

µd ⇠ 1

5
µN . (54)

The Schmidt value for the magnetic moment
of a proton in a j⇡ = 1/2� orbital is µp ⇡
�0.26µN . In contrast to E2 phenomena, mag-
netic properties in vibrational nuclei are not col-
lective, and the contributions of the odd fermion
cannot be neglected. As will be shown in what
follows, the static M1 moment of the I = 1/2
ground state of the odd-mass nuclei calculated
from the operator (52) is µ(1/2) =

p
⇡/3µa.

Thus, we naively estimate the value of µa as

µa ⇠ µp. (55)

Static M1 moments for the ground state in
103Rh, 107Ag and 109Ag are consistent with this
estimate. It is important to realize that the
LEC µa is neither equal nor simply related to
the Schmidt value. In the EFT considered in
this work, we couple a fermion with j⇡ = 1/2�

(and not a free proton in a p wave) to a col-
lective state. We have no information about

any radial wave function of the coupled fermion,
and we have no operators to act on its spin and
its orbital angular momentum separately. The
coupling between the fermion and the core is
strong (as the separation energy S considerably
exceeds the energy scale ! of core excitations).
The result of the coupling is again a collec-
tive state, and renormalizations replace “bare”
quantities such as the proton’s magnetic mo-
ment by e↵ective couplings. It is useful to con-
trast the EFT for vibrations in odd-mass nuclei
with halo EFT [28–30, 68] for odd-mass nuclei.
In halo EFT, a nucleon is very weakly bound
to a core, and S ⌧ ! holds. The nucleon’s
Schmidt value is the leading contribution to the
total magnetic moment, and subleading correc-
tions are of size S/! ⌧ 1 [69, 70].

Let us now turn to the phonon-changing
terms in Eq. (52) and discuss the size of the
LECs µd1 and µa1. Due to the absence of
strong collective e↵ects in M1 observables, the
naive expectation is that transition matrix ele-
ments again are of single-particle size, i.e. sim-
ilar to µN or µp. Higher-order corrections
to the leading phonon-changing and phonon-
preserving terms of the M1 operator (52) en-
ter with increasing powers of boson or fermion
creation and annihilation operators. We expect
them to scale as " and neglect them in what
follows.

The M1 reduced transition probabilities and
static M1 moments are given by [9]

B(M1; i ! f) =
|hf ||µ̂||ii|2
2Ii + 1

(56)

and

µ(I) =

r
4⇡

3

CII
II10p
2I + 1

hI||µ̂||Ii, (57)

respectively.

A. Static moments and phonon-conserving
transition strengths

The LO static M1 moments of even-even and
odd-mass nuclei can be calculated from the re-

4

two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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ĵ =
1p
2

�
a† ⌦ ã
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two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
is only active when two fermions are coupled to
the vibrating core.
Let us attempt to establish a power count-

ing for operators involving fermion degrees of
freedom. For an operator Ôn consisting of 2n
fermion annihilation and creation operators, we
propose its matrix elements to scale as

hÔni ⇠ hÔn�1i!
⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)

HNLO ⌘ gJj Ĵ · ĵ+ !2N̂ n̂ (19)
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Testing	the	power	counting

Cumulative	distributions	for	fitted	LO	and	NLO	expansion	coefficients	for	the	energies	are	in	
agreement	with	the	power	counting



Order-by-order	improvement

LO:
• One	LEC
• Harmonic	behavior



LO:
•One	LEC
•Harmonic	behavior

NLO:
•Two	additional	LECs
•Particle-core	interactions

Order-by-order	improvement



LO:
•One	LEC
•Harmonic	behavior

NLO:
•Two	additional	LECs
•Particle-core	interactions

NNLO:
•Three	additional	LECs
•Anharmonic	corrections

Accuracy	and	precision	increases	
order	by	order	at	the	expense	of	
reduced	predictive	power

Order-by-order	improvement



LO	phonon-annihilating	B(E2)	values
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TABLE IV. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
106Pd/107Ag system in Weisskopf units. The
uncertainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

106Pd 2+
1

! 0+
1

44(1) 35(12)

0+
2

! 2+
1

35(8) 69(23)

2+
2

! 2+
1

44(4) 69(23)

4+
1

! 2+
1

76(11) 69(23)
107Ag 3

2

�
1

! 1

2

�
1

42(4) 34(11)
5

2

�
1

! 1

2

�
1

43(3) 34(11)
1

2

�
2

! 3

2

�
1

27(23)
1

2

�
2

! 5

2

�
1

41(23)
3

2

�
2

! 3

2

�
1

48(23)
3

2

�
2

! 5

2

�
1

20(23)
5

2

�
2

! 3

2

�
1

14(23)
5

2

�
2

! 5

2

�
1

55(23)
7

2

�
1

! 3

2

�
1

62(23)
7

2

�
1

! 5

2

�
1

7(23)
9

2

�
1

! 5

2

�
1

68(23)

TABLE V. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
108Pd/109Ag system in Weisskopf units. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

108Pd 2+
1

! 0+
1

49(1) 34(11)

0+
2

! 2+
1

52(5) 69(23)

2+
2

! 2+
1

71(5) 69(23)

4+
1

! 2+
1

73(8) 69(23)
109Ag 3

2

�
1

! 1

2

�
1

40(40) 34(11)
5

2

�
1

! 1

2

�
1

41(6) 34(11)
1

2

�
2

! 3

2

�
1

27(23)
1

2

�
2

! 5

2

�
1

41(23)
3

2

�
2

! 3

2

�
1

49(24) 47(23)
3

2

�
2

! 5

2

�
1

20(23)
5

2

�
2

! 3

2

�
1

8(4) 14(23)
5

2

�
2

! 5

2

�
1

10(7) 54(23)
7

2

�
1

! 3

2

�
1

61(23)
7

2

�
1

! 5

2

�
1

7(23)
9

2

�
1

! 5

2

�
1

68(23)

TABLE VI. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
110Cd/109Ag system in Weisskopf units. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

110Cd 2+
1

! 0+
1

27(1) 23(8)

0+
2

! 2+
1

46(15)

2+
2

! 2+
1

30(5) 46(15)

4+
1

! 2+
1

42(9) 46(15)
109Ag 3

2

�
1

! 1

2

�
1

40(40) 23(8)
5

2

�
1

! 1

2

�
1

41(6) 23(8)
1

2

�
2

! 3

2

�
1

19(16)
1

2

�
2

! 5

2

�
1

28(16)
3

2

�
2

! 3

2

�
1

49(24) 33(16)
3

2

�
2

! 5

2

�
1

14(16)
5

2

�
2

! 3

2

�
1

8(4) 9(16)
5

2

�
2

! 5

2

�
1

10(7) 37(16)
7

2

�
1

! 3

2

�
1

42(16)
7

2

�
1

! 5

2

�
1

5(16)
9

2

�
1

! 5

2

�
1

47(16)

ployed to fit the single LECQ0. The only excep-
tion was the (1/2)12 ! (5/2)�1 transition strength
in 103Rh, which was excluded due to its unex-
pectedly large value. The values of Q0 for the
102Ru/103Rh, 106Pd/107Ag, 108Pd/109Ag and
110Cd/109Ag systems are 0.28, 0.32, 0.32 and
0.27 eb, respectively. Note that the transition
strengths in 109Ag can be described employing
either108Pd or 110Cd as a core. Both descrip-
tions agree with each other within theoretical
uncertainties.

B. Static moments and phonon-conserving
transition strengths

The term proportional to Q1 in the E2 oper-
ator (44) couples states with the same number
of phonons. Thus, Q1 enters in the LO calcula-
tion of static E2 moments. The reduced matrix
elements associated to these observables are

LO	B(E2)	values	for	phonon-annihilating	
transitions	[W.	u.]

LEC	fitted	to	even-even	and	odd-mass	nuclei	
E2	transitions	strengths



LO	relations	between	even-even	and	odd-mass	E2	observables

102Ru/103Rh

106Pd/107Ag

108Pd/109Ag



LO	relations	between	even-even	and	odd-mass	E2	observables

106Pd/107Ag

108Pd/109Ag



M1	operator

Most	general	operator	of	rank	one

LO	term:
•Two	LECs
•Phonon-conserving	transition	strengths
•Static	M1	moments

NLO	term:
•Two	LECs
•Phonon-annihilating	transition	strengths

4

Q̂ = Q0

⇣
d† + d̃

⌘
+Q1

⇣
d† ⌦ d̃

⌘(2)

�N = ±1 �N = 0,±2 Q0d ⇠ Q1d
2 =) Q1 ⇠

r
!

⇤
Q0

Q1

Q0
⇠ 0.58

Q1

Q0
⇡ 0.47

Q1

Q0
⇡ 0.41

Q1

Q0
⇡ 0.33

Q1

Q0
⇡ 0.42

(27)

B(E2; I⇡i ! I⇡f ) =

���hI⇡f ||Q̂||I⇡i i
���
2

2Ii + 1

Q(I⇡) = hI⇡||Q̂||I⇡i

(28)

µ̂LO = µ0Î µ(I⇡) = µ0

r
4⇡

3
CII

II10

p
I(I + 1)

µ(4+) = 2µ(2+)
p
16⇡ 2

p
16⇡

(29)

µ̂ =µdĴ+ µaĵ+
h⇣

d† + d̃
⌘
⌦
⇣
µd1Ĵ+ µa1ĵ

⌘i(1)
(30)

↵LO ↵NLO (31)

µ(2+1 ) ⇠0.79± 0.02 nm

µ(2+2 ) ⇠0.71± 0.10 nm

µ(4+1 ) ⇠1.8± 0.4 nm

(32)

 0 !  0  ±2 ! e±i2�̃ ±2 (33)



LO	M1	static	moments	and	phonon-conserving	B(M1)	values
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
an asterisk were employed to fit the LECs.
The uncertainty was quantified from 68% DOB
intervals.

Nucleus I⇡i µ
exp

(I⇡i ) µ
EFT

(I⇡i )
102Ru 2+

1

0.85(3)⇤ 0.85(5)

2+
2

0.85(10)

4+
1

1.70(8)
103Rh 1

2

�
1

�0.088⇤ �0.088
3

2

�
1

0.77(7) 0.81(5)
5

2

�
1

1.08(4) 0.76(5)
7

2

�
1

2.0(6) 1.7(1)
9

2

�
1

2.8(5) 1.6(1)
106Pd 2+

1

0.79(2)⇤ 0.79(5)

2+
2

0.71(10) 0.79(10)

4+
1

1.8(4) 1.58(8)
107Ag 1

2

�
1

�0.11⇤ �0.11
3

2

�
1

0.98(9) 0.78(5)
5

2

�
1

1.02(9) 0.68(4)
7

2

�
1

1.6(1)
9

2

�
1

1.5(1)
108Pd 2+

1

0.71(2)⇤ 0.71(4)

2+
2

0.71(9)

4+
1

1.42(7)
109Ag 1

2

�
1

�0.13⇤ �0.13
3

2

�
1

1.10(10) 0.72(5)
5

2

�
1

0.85(8) 0.58(4)
7

2

�
1

1.5(1)
9

2

�
1

1.3(1)

Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.

TABLE XIII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.

Nucleus I⇡i ! I⇡f B(M1)
exp

B(M1)
EFT

103Rh 5

2

�
1

! 3

2

�
1

0.034(2)
5

2

�
2

! 3

2

�
2

0.034(5)
9

2

�
1

! 7

2

�
1

0.038(3)
107Ag 5

2

�
1

! 3

2

�
1

0.033(4) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(4)
9

2

�
1

! 7

2

�
1

0.040(2)
109Ag 5

2

�
1

! 3

2

�
1

0.043(7) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(3)
9

2

�
1

! 7

2

�
1

0.040(2)

V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.

Technically, the EFT we considered falls

TABLE XIV. Reduced matrix elements relevant for
phonon-annihilating M1 transitions in terms of µd1

and µa1.

System Ii ! If hf ||µ̂||ii
odd-mass 3

2

1

! 1

2

1

�
q

3

2

µa1

1

2

2

! 3

2

1

q
3

5

µa1

3

2

2

! 3

2

1

� 3

5

p
42µd1 + 1

5

p
42µa1

3

2

2

! 5

2

1

� 1

5

p
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
an asterisk were employed to fit the LECs.
The uncertainty was quantified from 68% DOB
intervals.
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Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.

TABLE XIII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.
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V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.

Technically, the EFT we considered falls
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Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.
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transitions suggest that an EFT approach to
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tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
an asterisk were employed to fit the LECs.
The uncertainty was quantified from 68% DOB
intervals.
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For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.
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V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.
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TABLE XV. Reduced transition probabilities for
phonon-annihilating M1 transitions in 103Rh and
109Ag in Weisskopf units. The uncertainty was
quantified from 68% DOB intervals.
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in the category of “particle-vibrator” models.
Very recently, Stuchbery et al. [49] measured
g factors of the odd isotopes 111,113Cd and
found that the specific particle-vibrator model
of Ref. [73] failed to capture key aspects of
the data. A second attempt to describe these
cadmium isotopes was then made within the
particle-rotor (PR) model described in Ref. [74].

What would an EFT approach yield for these
isotopes? The 111,113Cd nuclei have I⇡ = 1/2+

ground states, and some low-lying levels can be
viewed as the result of a j⇡ = 1/2+ neutron cou-
pled to the collective excitations of 110,112Cd.
In addition to the j⇡ = 1/2+ orbital, one also
has to include a very low-lying j⇡ = 5/2+ or-
bital in the description. Let the fermion cre-
ation operators a†⌫ with ⌫ = �1/2, 1/2 and b†µ
with µ = �5/2,�3/2, . . . , 5/2 create a fermion in
the j⇡ = 1/2+ and j⇡ = 5/2+ orbital, respec-
tively. The LO Hamiltonian that governs the
interactions between the fermion degrees of free-

dom and the quadrupole bosons is

Habd = �S(n̂a + n̂b)

+!1N̂ + !bn̂b

+gdaĴ · ĵa + gdbĴ · ĵb
+!2aN̂ n̂a + !2bN̂ n̂b. (61)

Here, we used the operators

n̂a ⌘ a† · ã, (62)

n̂b ⌘ b† · b̃, (63)

ĵa ⌘ 1p
2

�
a† ⌦ ã

�(1)
, (64)

ĵb ⌘
p
70

2

⇣
b† ⌦ b̃

⌘(1)

. (65)

In the Hamiltonian (61) we omitted terms that
are quartic in the boson operators. As before, S
denotes the separation energy and is the largest
energy scale in the Hamiltonian. The di↵er-
ence between the separation energies of the a
and b fermions is denoted as !b ⇡ 0.3 MeV,
and is similar in size as !1. Interactions be-
tween the fermion orbitals are smaller correc-
tions and omitted. The Hamiltonian (61) sim-
ply describes two fermion orbitals that interact
with the quadrupole bosons but do not inter-
act with each other. Its eigenstates are simple
product states.

Within this EFT, the phonon-conserving part
of the M1 operator has the leading terms

µ̂ = µdĴ+ µaĵa + µbĵb. (66)

Stuchbery et al. found the static M1 moments
of the ground state |(1/2)+1 i = a†|0i and the
excited states

| � 5
2

�+
1
i = b†|0i and |I+f i = �

d† ⌦ f†�(I) |0i,
(67)

with f = a, b and I = 3/2, 5/2, of particular in-

LO	B(M1)	values	for	phonon-conserving	
transitions	in	odd-mass	nuclei	[W.	u.]

LECs	fitted	to	even-even	and	odd-mass	
nuclei	M1	transitions	strengths
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Description	of	low-lying	positive-parity	odd-odd	states
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I. INTRODUCTION

II. � DECAY FROM ODD-ODD NUCLEI

In what follows we attempt to describe � decays from odd-odd to even-even nuclei which spectra and electromagnetic
properties behave like those of an spherical vibrator at leading order (LO). The description of the odd-odd nuclei
involved in the � decays we are about to investigate is extremely complicated. In order to calculate the required
matrix elements we will assume the ground state for the later systems can be described at LO as a collective core,
with an even number of neutrons and protons, coupled to an odd neutron and an odd proton. Uncertainties due to
omitted next-to-leading order (NLO) contributions to these ground states, among others, will propagate to the matrix
elements we wish to calculate. The e↵ective field theory (EFT) approach we employ is particularly useful to estimate
these uncertainties, enabling a more meaningful comparison of results and predictions with experimental data.

A. �-decay operator and its matrix elements

The EFT developed in Refs. [1? ] describes spherical odd-mass nuclei at low energies by coupling either an odd
neutron or neutron hole or an odd proton or proton hole to an even-even collective core. The degrees of freedom in
terms of which EFT is written are the boson quadrupole, neutron and proton operators

⇥

dµ, d
†
⌫

⇤

= �⌫µ,
�

nµ, n
†
⌫

 

= �⌫µ and
�

pµ, p
†
⌫

 

= �⌫µ, (1)

where the d operators create and annihilate quadrupole phonons, the n operators create and annihilate a neutron
or neutron hole in a j⇡n

n orbital, and the p operators create and annihilate a proton or proton hole in a j
⇡p
p orbital,

respectively. The spin and parity of the orbital in which the odd fermion lies in a particular odd-mass nucleus are
inferred from the spin and parity of the later’s ground state. While additional orbitals may be accessible to the odd
fermion, it is assumed by the EFT that at LO only the lowest lying orbital enters the description of the low-energy
properties of the odd-mass system.

In order to attempt a description of the parity-conserving allowed � decays from odd-odd nuclei we will extend the
EFT of Refs. [1? ] and write the lowest positive-parity odd-odd states at LO as

|IM ; jp; jni =
X

µ⌫

CIM
jnµjp⌫n

†
µp

†
⌫ |0i, (2)

where I and M are the spin of the state and its projection onto the z-axis and |0i is the LO even-even ground state.
Here the spins and parities of the orbitals in which the odd neutron and proton lie are inferred from the ground states
of the odd-mass nuclei adjacent to both the even-even and odd-odd nuclei involved in the � decay of interest. It is
required for the spins and parities of this orbitals to fulfill the relations |jn � jp|  I  jn + jp and ⇡n⇡p = 1.

The description of the allowed � decays from the odd-odd state (2) to the even-even ground, one- and two-phonon
states requires for us to construct the most general tensor of rank one in the e↵ective degrees of freedom (1) coupling
odd-odd and even-even states. At LO in the number of boson operators, this operator is

Ô� =C� (p̃⌦ ñ)(1)

+
X

`

C�`

h⇣

d† + d̃
⌘

⌦ (p̃⌦ ñ)(`)
i

(1)

+
X

L`

C�L`



⇣

d† ⌦ d† + d̃⌦ d̃
⌘

(L)

⌦ (p̃⌦ ñ)(`)
�

(1)

+ h. c.,

(3)

with

ñµ ⌘ (�1)jn+µn�µ and p̃µ ⌘ (�1)jp+µp�µ. (4)

Here h. c. stands for hermitian conjugate, and the coupling of two tensors is as defined as in Ref [2]. Let us discuss
the operator (3) in more detail. Assume we are to study the �� decay from an odd-odd nucleus with N +1 neutrons
and Z � 1 protons to an even-even nucleus with N neutrons and Z. Within the EFT, the odd-odd nucleus involved
in the decay would be described as the even-even core plus a neutron plus a proton hole. In order to couple these
nuclei, the fermion annihilation operators in the � operator (3) annihilate the odd neutron and proton hole. This
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with an even number of neutrons and protons, coupled to an odd neutron and an odd proton. Uncertainties due to
omitted next-to-leading order (NLO) contributions to these ground states, among others, will propagate to the matrix
elements we wish to calculate. The e↵ective field theory (EFT) approach we employ is particularly useful to estimate
these uncertainties, enabling a more meaningful comparison of results and predictions with experimental data.

A. �-decay operator and its matrix elements

The EFT developed in Refs. [1? ] describes spherical odd-mass nuclei at low energies by coupling either an odd
neutron or neutron hole or an odd proton or proton hole to an even-even collective core. The degrees of freedom in
terms of which EFT is written are the boson quadrupole, neutron and proton operators
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where the d operators create and annihilate quadrupole phonons, the n operators create and annihilate a neutron
or neutron hole in a j⇡n

n orbital, and the p operators create and annihilate a proton or proton hole in a j
⇡p
p orbital,

respectively. The spin and parity of the orbital in which the odd fermion lies in a particular odd-mass nucleus are
inferred from the spin and parity of the later’s ground state. While additional orbitals may be accessible to the odd
fermion, it is assumed by the EFT that at LO only the lowest lying orbital enters the description of the low-energy
properties of the odd-mass system.

In order to attempt a description of the parity-conserving allowed � decays from odd-odd nuclei we will extend the
EFT of Refs. [1? ] and write the lowest positive-parity odd-odd states at LO as
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where I and M are the spin of the state and its projection onto the z-axis and |0i is the LO even-even ground state.
Here the spins and parities of the orbitals in which the odd neutron and proton lie are inferred from the ground states
of the odd-mass nuclei adjacent to both the even-even and odd-odd nuclei involved in the � decay of interest. It is
required for the spins and parities of this orbitals to fulfill the relations |jn � jp|  I  jn + jp and ⇡n⇡p = 1.

The description of the allowed � decays from the odd-odd state (2) to the even-even ground, one- and two-phonon
states requires for us to construct the most general tensor of rank one in the e↵ective degrees of freedom (1) coupling
odd-odd and even-even states. At LO in the number of boson operators, this operator is
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Here h. c. stands for hermitian conjugate, and the coupling of two tensors is as defined as in Ref [2]. Let us discuss
the operator (3) in more detail. Assume we are to study the �� decay from an odd-odd nucleus with N +1 neutrons
and Z � 1 protons to an even-even nucleus with N neutrons and Z. Within the EFT, the odd-odd nucleus involved
in the decay would be described as the even-even core plus a neutron plus a proton hole. In order to couple these
nuclei, the fermion annihilation operators in the � operator (3) annihilate the odd neutron and proton hole. This
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vibrational mode. For details we refer the reader to Ref [1].
For the di↵erent terms of the operator (3) we have
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where the symbol
EFT⇠ value must be read as “expected to scale as value within the EFT”. The uncertainties for these

ratios have been naively estimated based on the expectation for the LECs to be of natural size. Through this work
the later statement will be understood as
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We emphasize that these are naive estimates and must be tested. Thus, the observed successive hindering of � decays
from 1+, 2+ and 3+ odd-odd ground states to the 0+

1

, 2+
1

an 2+
2

even-even states reported in Ref. [? ] arises naturally
within the EFT.

C. Sum rules

The total transition strengths are defined by

S± =
X

n=1

|h1+n ||Ô�± ||0+I i|
2, (14)

where the + or � subscripts are employed to reference electron capture or �� processes, respectively. Within the
EFT, the odd-mass excited 1+ states can be either multiphonon or single-particle excitations. In the former case,
and based on the power counting (10), the energies of these excitations and the matrix elements of the operator (3)
between them and the even-even 0+ state of interest scale as
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respectively. If a similar scaling is assumed for the single-particle excitations, then the total transition strengths may
be estimated as
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D. C� within the pairing plus quadrupole model

As mentioned in the previous section, the LECs of the operator (3) cannot be calculated within the EFT, and
must be fitted to experimental data. Is it possible to map the reduced matrix elements of interest to those calculated
within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the
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i

(1)

+
X

L`

C�L`



⇣

d† ⌦ d† + d̃⌦ d̃
⌘

(L)

⌦ (p̃⌦ ñ)(`)
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We emphasize that these are naive estimates and must be tested. Thus, the observed successive hindering of � decays
from 1+, 2+ and 3+ odd-odd ground states to the 0+
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even-even states reported in Ref. [? ] arises naturally
within the EFT.

C. Sum rules

The total transition strengths are defined by
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where the + or � subscripts are employed to reference electron capture or �� processes, respectively. Within the
EFT, the odd-mass excited 1+ states can be either multiphonon or single-particle excitations. In the former case,
and based on the power counting (10), the energies of these excitations and the matrix elements of the operator (3)
between them and the even-even 0+ state of interest scale as
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D. C� within the pairing plus quadrupole model

As mentioned in the previous section, the LECs of the operator (3) cannot be calculated within the EFT, and
must be fitted to experimental data. Is it possible to map the reduced matrix elements of interest to those calculated
within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the
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||Ô� ||0+i i
⇣!

⇤

⌘n/2
, (16)

respectively. If a similar scaling is assumed for the single-particle excitations, then the total transition strengths may
be estimated as

S±
EFT⇠ 3C2

�±

X

n=0

⇣!

⇤

⌘n
or

S±
C2

�±

EFT⇠ 4.5(+33

�19

). (17)

Thus,

S� � S
+

EFT⇠ 4.5
⇣

C2

�� � C2

�+

⌘

. (18)

D. C� within the pairing plus quadrupole model

As mentioned in the previous section, the LECs of the operator (3) cannot be calculated within the EFT, and
must be fitted to experimental data. Is it possible to map the reduced matrix elements of interest to those calculated
within more fundamental theories or models? In what follows we will map the matrix elements for allowed � decays
from odd-odd ground states to even-even ground states calculated within the EFT to those calculated employing the



The	matrix	elements	of	the	𝛽 operator	between	low-lying	odd-odd	states	and	even-even	
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action represents the decay of a neutron into a proton followed by the filling of the proton hole by the later. The
additional filling of a neutron hole takes place if the annihilated neutron was a core neutron. The h. c. term allows
for the description of the electron capture decay to the even-even nucleus with N + 2 neutrons and Z � 2 protons.
For this decay it is more convenient to describe the odd-odd nucleus as the later even-even core plus a neutron hole
plus a proton. In this case, the fermion annihilation operators in the � operator (3) annihilate a neutron hole and
a proton, representing the conversion of a proton into a neutron, followed by the filling of neutron hole by the later,
and the filling of an additional proton hole if the annihilated proton was a core proton.

The reduced matrix elements of the operator (3) between the odd-odd state (2) and the ground, one- and two-phonon
states the corresponding even-even nuclei are

h0||Ô� ||Ii; jn; jpi =
(

�C�

p
3(�1)jp�jn+Ii Ii = 1

0 otherwise
, (5)

h2;N = 1||Ô� ||Ii; jn; jpi =
(

C�Ii

p
3(�1)jp�jn+Ii |Ii � 1|  2  Ii + 1

0 otherwise
(6)

and

hIf ;N = 2||Ô� ||Ii; jn; jpi =
(

C�If Ii

p
6(�1)jp�jn+Ii |Ii � 1|  If  Ii + 1

0 otherwise
, (7)

where N is the number of phonons in the even-even state. The construction of the even-even states is as described in
Ref. [3].

According to Fermi’s golden rule of perturbation theory the half-life tif of the � decay between the initial and final
states, denoted by |ii and |fi, respectively, is related to the reduced matrix element of the operator (3) by
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where fif is a phase-space factor containing the lepton kinematics,  ⌘ 6147 s is the �-decay constant, gA ⌘ 1.25 is
the free-nucleon value of the axial-vector coupling constant of the weak interactions and Ii is the spin of the initial
state. The quantity (ft)if ⌘ fif tif is the known as comparative half-life or ft-value. From here, the ratio of reduced
matrix elements involved in � decays to di↵erent final states can be written as
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These ratios will be employed to compare the EFT with experimental data.
A comment on the definition for the ft-value given in Refs. [? ? ]. Matching this definition to that in Eq. (8) leads

to  = g2AB. For the di↵erent values of B in di↵erent regions of the nuclear chart to be consistent with the constant
value of  it would be required for the axial-vector coupling constant gA to exhibit a region-dependent quenching.

B. Scales of � decays with phonon-number di↵erence

Since the odd-odd state (2) contains no phonons, the first, second and third terms of the operator (3) couple states
with phonon-number di↵erences of zero, one and two, respectively. Thus, the low-energy constats (LECs) C� , C�`

and C�L` enter in the description of the � decays to the even-even ground, one- and two-phonon states, respectively.
While their absolute scale cannot be calculated within the EFT, the power counting established in Ref. [1] suggests
scaling factors between them. The mentioned power counting is based on the assumption that at the energy scale ⇤
where the EFT breaks, located around the three-phonon level in the even-even nuclei of interest, the matrix elements
of every term of any operator scale similarly. From this assumption it is concluded that at the breakdown scale the
matrix elements of an operator containing n boson operators, denoted by d, scale as
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hIf ;N = 2||Ô� ||Ii; jn; jpi =
(

C�If Ii

p
6(�1)jp�jn+Ii |Ii � 1|  If  Ii + 1

0 otherwise
, (7)

where N is the number of phonons in the even-even state. The construction of the even-even states is as described in
Ref. [3].

According to Fermi’s golden rule of perturbation theory the half-life tif of the � decay between the initial and final
states, denoted by |ii and |fi, respectively, is related to the reduced matrix element of the operator (3) by

1

tif
=

fif


g2A

�

�

�

hf ||Ô� ||ii
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hf ||Ô� ||ii
�

�

�

=
p

10log(ft)if�log(ft)if0 . (9)

These ratios will be employed to compare the EFT with experimental data.
A comment on the definition for the ft-value given in Refs. [? ? ]. Matching this definition to that in Eq. (8) leads

to  = g2AB. For the di↵erent values of B in di↵erent regions of the nuclear chart to be consistent with the constant
value of  it would be required for the axial-vector coupling constant gA to exhibit a region-dependent quenching.

B. Scales of � decays with phonon-number di↵erence

Since the odd-odd state (2) contains no phonons, the first, second and third terms of the operator (3) couple states
with phonon-number di↵erences of zero, one and two, respectively. Thus, the low-energy constats (LECs) C� , C�`

and C�L` enter in the description of the � decays to the even-even ground, one- and two-phonon states, respectively.
While their absolute scale cannot be calculated within the EFT, the power counting established in Ref. [1] suggests
scaling factors between them. The mentioned power counting is based on the assumption that at the energy scale ⇤
where the EFT breaks, located around the three-phonon level in the even-even nuclei of interest, the matrix elements
of every term of any operator scale similarly. From this assumption it is concluded that at the breakdown scale the
matrix elements of an operator containing n boson operators, denoted by d, scale as

hdni ⇤⇠
✓

⇤

!

◆n/2

, (10)

3

action represents the decay of a neutron into a proton followed by the filling of the proton hole by the later. The
additional filling of a neutron hole takes place if the annihilated neutron was a core neutron. The h. c. term allows
for the description of the electron capture decay to the even-even nucleus with N + 2 neutrons and Z � 2 protons.
For this decay it is more convenient to describe the odd-odd nucleus as the later even-even core plus a neutron hole
plus a proton. In this case, the fermion annihilation operators in the � operator (3) annihilate a neutron hole and
a proton, representing the conversion of a proton into a neutron, followed by the filling of neutron hole by the later,
and the filling of an additional proton hole if the annihilated proton was a core proton.

The reduced matrix elements of the operator (3) between the odd-odd state (2) and the ground, one- and two-phonon
states the corresponding even-even nuclei are
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value of  it would be required for the axial-vector coupling constant gA to exhibit a region-dependent quenching.

B. Scales of � decays with phonon-number di↵erence

Since the odd-odd state (2) contains no phonons, the first, second and third terms of the operator (3) couple states
with phonon-number di↵erences of zero, one and two, respectively. Thus, the low-energy constats (LECs) C� , C�`

and C�L` enter in the description of the � decays to the even-even ground, one- and two-phonon states, respectively.
While their absolute scale cannot be calculated within the EFT, the power counting established in Ref. [1] suggests
scaling factors between them. The mentioned power counting is based on the assumption that at the energy scale ⇤
where the EFT breaks, located around the three-phonon level in the even-even nuclei of interest, the matrix elements
of every term of any operator scale similarly. From this assumption it is concluded that at the breakdown scale the
matrix elements of an operator containing n boson operators, denoted by d, scale as
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✓

⇤

!
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h0||Ô� ||Ii; jn; jpi =
(

�C�

p
3(�1)jp�jn+Ii Ii = 1

0 otherwise
, (5)

h2;N = 1||Ô� ||Ii; jn; jpi =
(

C�Ii

p
3(�1)jp�jn+Ii |Ii � 1|  2  Ii + 1

0 otherwise
(6)

and

hIf ;N = 2||Ô� ||Ii; jn; jpi =
(

C�If Ii

p
6(�1)jp�jn+Ii |Ii � 1|  If  Ii + 1

0 otherwise
, (7)
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tif
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fif
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�

�

�

hf ||Ô� ||ii
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�

2

2Ii + 1
or (ft)if = 

2Ii + 1

g2A

�

�

�

hf ||Ô� ||ii
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�

�

2

, (8)
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where the function �(z, s, a) ⌘
P1

n=0

zn/(a+ n)s is known as Lerch transcendent.
Within the EFT it is possible to estimate the GT matrix element between the initial ground and final first-excited

0+ states even if the matrix element for the single-� decay to the final first excited 0+ state is unknown. According
to the power counting (10) it is expected that

mec
2h0+F2

||Ô
2⌫�� ||0+I1iSSD ⇡mec2h0+F2

||Ô� ||1+
1

ih1+
1

||Ô� ||0+I1i
D

12

EFT⇠ mec2h0+F1

||Ô� ||1+
1

ih1+
1

||Ô� ||0+I1i
D

11

D
11

D
12

!

⇤

=mec
2h0+F1

||Ô
2⌫�� ||0+I1iSSD

D
11

D
12

!

⇤
,

(34)

where D
1i ⌘ E(1+

1

)� [E(0+I1)� E(0+Fi)].

IV. COMPARISON WITH DATA

In what follows we study ��, electron capture and two-neutrino ���� decays in nuclei near shell closures for which
the even-even systems exhibit collective behavior. First, we test the EFT via the relative scales for decays to excited
states with respect to that of the decay to the ground state, proposed in Eqs. (11) and (12), in order to gain insight
on how well can these single-particle transitions be described within an e↵ective theory that describes the parent and
daughter nuclei in terms of a collective core and one or two odd fermions. To which extent is the EFT capable to
describe processes in which the individual nucleons of the core can be involved? Do transitions to even-even excited
states scale as expected by the EFT? Then we compare matrix elements for � decays to even-even ground states
with experimental data. Does the PPQ model’s matrix elements with their corresponding EFT-assigned uncertainty
consistently describe experimental data? Finally, we calculate dimensionfull GT matrix elements for 2⌫�� between
0+ even-even states and compare with experimental data or predictions within other theories or models.

A. � decays from 1+
1 odd-odd states

In the particular case of � decays from I⇡ = 1+ odd-odd ground states, the following ratios arise

p

10log(ft)gs gs�log(ft)gs 1ph =
C�1

C�

EFT⇠ 0.58+42

�25

(35)

and

p

10log(ft)gs gs�log(ft)gs 2ph =

p
2C�If1

C�

EFT⇠ 0.47+35

�20

, (36)

where gs, 1ph and 2ph stands for ground, one- and two-phonon state, respectively. The uncertainties for these ratios
have been naively estimated based on the scales (11) and (12).

In Table I we list our results for �� and electron capture decays from odd-odd nuclei with I⇡ = 1+ ground states.
The first column shows parent and daughter nuclei, as well as the decay mode between them. Columns two to five
show the experimental values for the logarithm of the matrix elements involved in � decays to even-even states when
available. On the left and right sides of the sixth column experimental and predicted values for |h2+

1

||Ô� ||1+
1

i| are
shown in units of C� , respectively. On the left and right sides of columns eight and nine the experimental and predicted

values for |h0+
2

||Ô� ||1+
1

i| and |h2+
2

||Ô� ||1+
1

i| are shown in units of C� , respectively. The for the LECs C�1 and C�If1

can be deduced from these reduced matrix elements and Eqs. (35) and (36). Highlighted in red are the experimental
reduced matrix elements that cannot be consistently described within the EFT. These inconsistencies appear to
increase as the breakdown scale is approached. Later it will be tested if these inconsistency can be associated to a
“lack of collectivity” of the even-even excited states, signaled by inconsistencies of their electromagnetic properties.

Table I shows that relative sizes of nuclear matrix elements for � decays to even-even excited states within the EFT
agree with experimental data. How good is the description of their absolute sizes? The LEC C� can be “calculated”
from the log(ft)

gs gs

values as

log(ft)
gs gs

= log


g2AC
2

�

or C� =
1

gA

r



10log(ft)gs gs
. (37)

7

where the function �(z, s, a) ⌘
P1

n=0

zn/(a+ n)s is known as Lerch transcendent.
Within the EFT it is possible to estimate the GT matrix element between the initial ground and final first-excited

0+ states even if the matrix element for the single-� decay to the final first excited 0+ state is unknown. According
to the power counting (10) it is expected that

mec
2h0+F2

||Ô
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||Ô� ||0+I1i
D

12

EFT⇠ mec2h0+F1
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TABLE I. Experimental and predicted reduced matrix elements involved in � decays from I⇡ = 1+ odd-odd ground states to
even-even one- and two-phonon states in units of C� . The uncertainties are estimated based on the expectation for the LECs
to be of natural size [see Eqs. (35) and (36)].

Parent ! Daughter log(ft)
gs

log(ft)
2

+
1

log(ft)
0

+
2

log(ft)
2

+
2

|h2+
1

||Ô� ||1+
1

i| |h0+
2

||Ô� ||1+
1

i| |h2+
2

||Ô� ||1+
1

i|
62Cu

"! 62Ni 5.16 7.03 6.00 5.98 0.12 0.58(+42

�25

) 0.38 0.47(+35

�20

) 0.39 0.47(+35

�20

)
64Cu

"! 64Ni 4.97 5.50 0.54 0.58(+42

�25

)

66Cu
��
! 66Zn 5.33 5.43 6.01 5.82 0.79 0.58(+42

�25

) 0.46 0.47(+35

�20

) 0.57 0.47(+35

�20

)

68Cu
��
! 68Zn 5.76 5.16 6.30 5.80 1.97 0.58(+42

�25

) 0.54 0.47(+35

�20

) 0.95 0.47(+35

�20

)
68Ga

"! 68Zn 5.19 5.49 6.90 5.88 0.71 0.58(+42

�25

) 0.14 0.47(+35

�20

) 0.45 0.47(+35

�20

)

70Ga
��
! 70Ge 5.09 5.89 5.43 0.40 0.58(+42

�25

) 0.68 0.47(+35

�20

) 0.47(+35

�20

)

80As
��
! 80Se 5.70 5.70 7.20 6.70 1.00 0.58(+42

�25

) 0.18 0.47(+35

�20

) 0.32 0.47(+35

�20

)

82As
��
! 82Se 6.19 6.91 7.44 7.00 0.44 0.58(+42

�25

) 0.24 0.47(+35

�20

) 0.39 0.47(+35

�20

)

78Br
��
! 78Kr > 5.80 0.58(+42

�25

)
78Br

"! 78Se 4.75 5.07 6.50 6.60 0.69 0.58(+42

�25

) 0.13 0.47(+35

�20

) 0.12 0.47(+35

�20

)

80Br
��
! 80Kr 5.48 5.98 6.34 6.27 0.56 0.58(+42

�25

) 0.37 0.47(+35

�20

) 0.40 0.47(+35

�20

)
80Br

"! 80Se 4.67 4.94 5.30 5.70 0.73 0.58(+42

�25

) 0.48 0.47(+35

�20

) 0.30 0.47(+35

�20

)
80Rb

"! 80Kr 4.93 5.19 5.88 5.87 0.74 0.58(+42

�25

) 0.33 0.47(+35

�20

) 0.34 0.47(+35

�20

)
82Rb

"! 82Kr 4.58 4.86 6.72 6.29 0.72 0.58(+42

�25

) 0.08 0.47(+35

�20

) 0.14 0.47(+35

�20

)

98Nb
��
! 98Mo 4.72 5.57 5.40 4.95 0.37 0.58(+42

�25

) 0.46 0.47(+35

�20

) 0.77 0.47(+35

�20

)

100Nb
��
! 100Mo 5.10 5.65 5.70 5.90 0.53 0.58(+42

�25

) 0.50 0.47(+35

�20

) 0.40 0.47(+35

�20

)

100Tc
��
! 100Ru 4.59 6.40 5.04 7.10 0.12 0.58(+42

�25

) 0.60 0.47(+35

�20

) 0.05 0.47(+35

�20

)

102Tc
��
! 102Ru 4.78 5.99 6.60 7.00 0.25 0.58(+42

�25

) 0.12 0.47(+35

�20

) 0.08 0.47(+35

�20

)

104Rh
��
! 104Pd 4.55 5.80 7.36 8.70 0.24 0.58(+42

�25

) 0.04 0.47(+35

�20

) 0.01 0.47(+35

�20

)
104Rh

"! 104Ru 4.32 5.42 5.15 0.28 0.58(+42

�25

) 0.38 0.47(+35

�20

) 0.47(+35

�20

)

106Rh
��
! 106Pd 5.17 5.86 5.35 6.55 0.45 0.58(+42

�25

) 0.81 0.47(+35

�20

) 0.20 0.47(+35

�20

)

108Rh
��
! 108Pd 5.50 5.70 5.60 6.00 0.79 0.58(+42

�25

) 0.89 0.47(+35

�20

) 0.56 0.47(+35

�20

)
106Ag

"! 106Pd 4.92 5.24 6.50 0.69 0.58(+42

�25

) 0.16 0.47(+35

�20

) 0.47(+35

�20

)

108Ag
��
! 108Cd 4.52 5.35 0.38 0.58(+42

�25

)
108Ag

"! 108Pd 4.70 5.46 4.89 0.42 0.58(+42

�25

) 0.80 0.47(+35

�20

) 0.47(+35

�20

)

110Ag
��
! 110Cd 4.66 5.52 6.80 7.35 0.37 0.58(+42

�25

) 0.08 0.47(+35

�20

) 0.04 0.47(+35

�20

)
110Ag

"! 110Pd 4.09 � 4.80  0.44 0.58(+42

�25

)

114Ag
��
! 114Cd 5.10 5.60 6.30 6.50 0.56 0.58(+42

�25

) 0.25 0.47(+35

�20

) 0.20 0.47(+35

�20

)
112In

"! 112Cd 4.64 6.19 6.22 0.17 0.58(+42

�25

) 0.16 0.47(+35

�20

) 0.47(+35

�20

)

114In
��
! 114Sn 4.47 5.58 0.28 0.58(+42

�25

)
114In

"! 114Cd 4.89 � 5.30 5.5  0.62 0.58(+42

�25

) 0.49 0.47(+35

�20

) 0.47(+35

�20

)

116In
��
! 116Sn 4.66 5.85 5.88 6.31 0.25 0.58(+42

�25

) 0.24 0.47(+35

�20

) 0.15 0.47(+35

�20

)

118In
��
! 118Sn 4.79 5.63 5.98 6.15 0.38 0.58(+42

�25

) 0.25 0.47(+35

�20

) 0.21 0.47(+35

�20

)

120In
��
! 120Sn 5.02 5.25 5.96 6.37 0.77 0.58(+42

�25

) 0.34 0.47(+35

�20

) 0.21 0.47(+35

�20

)

122In
��
! 122Sn 5.11 5.36 6.49 5.71 0.75 0.58(+42

�25

) 0.20 0.47(+35

�20

) 0.50 0.47(+35

�20

)

124In
��
! 124Sn 5.92 6.96 5.64 0.58(+42

�25

) 0.47(+35

�20

) 0.47(+35

�20

)

128I
��
! 128Xe 6.06 6.49 7.75 6.75 0.61 0.58(+42

�25

) 0.14 0.47(+35

�20

) 0.45 0.47(+35

�20

)
128I

"! 128Te 5.05 6.01 0.33 0.58(+42

�25

)

LO	matrix	elements	for	𝛽 decays	to	excited	states	relative	to	the	matrix	element	for	
the	𝛽 decay	to	the	ground	state



C𝛽 from	a	PPQ	model

Within	the	PPQ	model*

and

We	identify

and

5

pairing plus quadrupole (PPQ) model described in Refs. [4? ? ], in an attempt to release some of the data employed
to fit the LECs within the EFT, thus increasing its predictive power.

The PPQ model Hamiltonian is given by

Ĥ
PPQ

= Ĥ
0

+ Ĥ
P

+ Ĥ
Q

, (19)

where Ĥ
0

is the single-particle (shell model-like) Hamiltonian, written in term of neutron and proton operators ajn
and ajp , respectively, fulfilling fermionic anticommutation relations

n

ajiµ, a
†
ji⌫

o

= �⌫µ, (20)

and Ĥ
P

and Ĥ
Q

are the pairing and quadrupole-quadrupole interactions, respectively. Bogoliubov transformations
for neutron and proton operators

↵jiµ = Ujiajiµ + Vji(�1)ji�µa†ji�µ (21)

define the neutron and proton quasi-particle operators fulfilling fermionic anticommutation relations
n

↵jiµ,↵
†
ji⌫

o

= �⌫µ (22)

in terms of the occupation coe�cients Uji and Vji . The ground states of odd-odd nuclei and the operator associated
to �� decays can be written in terms of the later degrees of freedom as [? ]

| IM i =
X

µ⌫

CIM
jnµjp⌫↵

†
jnµ

↵†
jp⌫

| 
0

i, (23)

and

Ĝ(�)

�µ =
hjp||�||jnip

3

X

mn

C1µ
jpmjnn

n

UjpUjn(�1)jn+n↵†
jpm

↵jn�n + VjpUjn(�1)jp�m+jn+n↵jp�m↵jn�n

+ UjpVjn↵
†
jpm

↵†
jnn

+ VjpVjn(�1)jp�m↵jp�m↵†
jnn

o

(24)

where | 
0

i is the even-even ground state. Since only the second term of the operator in Eq. (24) enters in the
calculation of �� decays between odd-odd and even-even ground states, we will identify this term with the first one
in the operator (3)

hjp||�||jnip
3

VjpUjn

�

↵̃jp ⌦ ↵̃jn

�

(1) , C� (p̃⌦ ñ)(1) , (25)

where the quasi-particle spherical tensors are defined as

↵̃jnµ ⌘ (�1)jn+µ↵jn�µ and ↵̃jpµ ⌘ (�1)jp�µ↵jp�µ. (26)

Even more, since the odd-odd ground states are constructed taking into account only one orbital per odd-fermion
within both the EFT (2) and the PPQ model (23), we propose the following identification

h 
0

||Ĝ(�)

� || IM i , h0||Ô� ||Ii; jn; jpi. (27)

This identification allows us to “calculate” C� within the PPQ model. Expressions similar to those in Eqs. (24)
and (26), excpet with n and p exchanged, are found for electron capture decays. An identification of the involved
matrix elements similar to that in Eq. (27) can also be made in this case.

What have we gained by calculating C� within the PPQ model? Even if the parameter B in the operator (24)
cannot be calculated within the PPQ model, the identification (27) would increase the predictive power of the EFT
regarding � decays since the before mentioned parameter behaves as a constant within certain mass regions of the
nuclear chart and the possibility to fit the Uji and Vji coe�cients entering in the description of � decays to data on
stripping and pickup reactions [4? ? ]. In the best case scenario, in which the parameter B can be calculated within
the PPQ (or any other) model, all matrix elements for � decays would be predictions. In any case, the systematic
construction of the operator (3) would provide these matrix elements with naive uncertainty estimates at worst. The
sources for uncertainty in the matrix element (5) are omitted terms in the operator (3) involving two phonon operators
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where | 
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i is the even-even ground state. Since only the second term of the operator in Eq. (24) enters in the
calculation of �� decays between odd-odd and even-even ground states, we will identify this term with the first one
in the operator (3)

hjp||�||jnip
3

VjpUjn

�

↵̃jp ⌦ ↵̃jn

�

(1) , C� (p̃⌦ ñ)(1) , (25)
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Even more, since the odd-odd ground states are constructed taking into account only one orbital per odd-fermion
within both the EFT (2) and the PPQ model (23), we propose the following identification
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This identification allows us to “calculate” C� within the PPQ model. Expressions similar to those in Eqs. (24)
and (26), excpet with n and p exchanged, are found for electron capture decays. An identification of the involved
matrix elements similar to that in Eq. (27) can also be made in this case.

What have we gained by calculating C� within the PPQ model? Even if the parameter B in the operator (24)
cannot be calculated within the PPQ model, the identification (27) would increase the predictive power of the EFT
regarding � decays since the before mentioned parameter behaves as a constant within certain mass regions of the
nuclear chart and the possibility to fit the Uji and Vji coe�cients entering in the description of � decays to data on
stripping and pickup reactions [4? ? ]. In the best case scenario, in which the parameter B can be calculated within
the PPQ (or any other) model, all matrix elements for � decays would be predictions. In any case, the systematic
construction of the operator (3) would provide these matrix elements with naive uncertainty estimates at worst. The
sources for uncertainty in the matrix element (5) are omitted terms in the operator (3) involving two phonon operators
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P

and Ĥ
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Uncertainties	of	the	matrix	element	for	the	𝛽 decay	to	the	ground	state

The	Taylor	expansion	of

yields	for	the	uncertainty

Uncertainty	estimates	for	log(ft)gs gs values

6

that can couple the odd-odd and even-even ground states, expected to scale as C�(!/⇤), and omitted NLO corrections
to the odd-odd ground state due to terms in the Hamiltonian mixing state with phonon-number di↵erences of one,
expected to scale as

p

!/⇤|IM ;N = 0; jp; jni. It is naively expected for the contribution to the matrix element (5)
due to both sources of uncertainty to scale as

�h0||Ô� ||I; jp; jni
EFT⇠ h0||Ô� ||I; jp; jni

!

⇤
. (28)

This naive uncertainty estimate is the one we associate to the matrix element (??). Due to the identification in
Eq. (27), this naive uncertainty estimate can also be associated to the PPQ matrix element. Thus, the EFT have
been employed to provide the PPQ model with theoretical uncertainties.

The uncertainty associated to the quantity log(ft)
gs gs

is naively estimated as the NLO order contribution to the

Taylor expansion of the logarithm of Eq. (8) with hf ||Ô� ||ii ⇡ h0||Ô� ||I; jp; jni(1± !/⇤), that is,

� log(ft)if
EFT⇠ 2

ln 10

!

⇤
. (29)

Calculated log(ft)
gs gs

values will be considered to be consistent with experimental data whenever the experimental
and theoretical values with their respective uncertainties overlap.

III. 2⌫�� DECAY BETWEEN EVEN-EVEN NUCLEI

what I need to know about two-neutrino double beta decay

A. Gamow-Teller matrix element for 2⌫�� decay

The dimensionless Gamow-Teller (GT) matrix element related to the half-life of two-neutrino double-� (2⌫��)
decays between even-even 0+ states can be calculated from the matrix elements of the operator (3) for single-� decays
from 1+ odd-odd intermediate states and the before mentioned even-even states. This matrix element takes the form

mec
2h0+F ||Ô2⌫�� ||0+I i =

X

n=1

mec2h0+F ||Ô� ||1+n ih1+n ||Ô� ||0+I i
Dn

, (30)
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2
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2
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E(0+I )� E(0+F )

2
.

(31)

In the later expressions me is the electron rest mass, |1+n i and E(1+n ) are the 1+ odd-odd states and their energies
relative to the lowest even-even ground state, respectively, and Q�� is the 2⌫�� decay Q-value.

In the single-state dominance (SSD) approximation only the contribution from the 1+
1

odd-odd state is taken into
account. The reduced matrix element (30) takes the approximate form

mec
2h0+F ||Ô2⌫�� ||0+I iSSD ⇡mec2h0+F ||Ô� ||1+
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(32)

How good is the SSD approximation? Let us naively estimate the uncertainty associated to the matrix element (32)
due to the SSD truncation. Based on the expected scales for the energies of odd-mass 1+ multiphonon excitations (15)
and the matrix elements of the operator (3) between them and the even-even 0+ states of interest (16), and assuming
a similar scaling for single-particle excitations, it is expected for the contribution to the dimensionfull matrix element
in Eq. (30) omitted in the SSD approximation (32) to scale as
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(33)
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h0+F ||Ô� ||1+
1

ih1+
1
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State µ EFT
2+
1

0.79 (2) 0.79 (24)
2+
2

0.71 (10) 0.79 (49)
4+
1

1.8 (4) 1.93 (49)
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PPQ	model	𝛽-decay	matrix	elements	with	EFT	uncertainties
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TABLE II. Experimental and calculated matrix elements involved in � decays from I⇡ = 1+ odd-odd ground states to even-even
ground states. The uncertainty estimate is based on the expected size for contributions due to omitted terms in the �-decay
operator (3) and NLO correction to the odd-odd ground state (??).

Parent ! Daughter log(ft)
exp

log(ft)
PPQ

gA |C� |
62Cu

"! 62Ni 5.16 5.80(29) 0.462 0.214(71)

66Cu
��
! 66Zn 5.33 5.40(29) 0.462 0.339(113)

70Ga
��
! 70Ge 5.09 5.20(29) 0.462 0.427(142)

78Br
"! 78Se 4.75 5.00(29) 0.462 0.537(179)

80Br
��
! 80Kr 5.48 5.70(29) 0.462 0.240(80)

80Br
"! 80Se 4.67 4.90(29) 0.462 0.603(201)

80Rb
"! 80Kr 4.93 5.20(29) 0.462 0.427(142)

82Rb
"! 82Kr 4.58 5.10(29) 0.462 0.479(159)

104Rh
��
! 104Pd 4.55 4.40(29) 0.291 1.698(566)

106Rh
��
! 106Pd 5.17 4.50(29) 0.291 1.514(504)

106Ag
"! 106Pd 4.92 5.00(29) 0.291 0.851(284)

108Ag
��
! 108Cd 4.52 4.40(29) 0.291 1.698(566)

108Ag
"! 108Pd 4.70 4.90(29) 0.291 0.955(318)

110Ag
��
! 110Cd 4.66 4.50(29) 0.291 1.514(504)

112In
"! 112Cd 4.64 5.00(29) 0.291 0.851(284)

114In
��
! 114Sn 4.47 4.60(29) 0.291 1.349(450)

128I
��
! 128Xe 6.06 5.70(29) 0.248 0.447(149)

128I
"! 128Te 5.05 4.80(29) 0.248 1.259(420)

The LEC can be calculated from either experimental or theoretical log(ft)
gs gs

values. If the PPQ model value,
denoted by log(ft)

PPQ

, is employed for the calculation, the uncertainty associated to the LEC can be estimated as
the NLO contribution to the Taylor expansion of (37) with log(ft)

gs gs

⇡ log(ft)
PPQ

+� log(ft)
PPQ

�C�
EFT⇠ C�

!

⇤
. (38)

In Table II we compare experimental and PPQ model reduced matrix elements involved in � decays from I⇡ = 1+

odd-odd ground states to even-even ground states. The first column shows the nuclei involved in the decay. The
second and third columns show the experimental and PPQ model log(ft)

gs gs

values. The uncertainty associated to
the later values is that given in Eq. (29). In column four the values of logB, taken from Ref. [? ], are shown. These
values depend on the mass region of the nuclear chart and the single-particle (shell-model like) orbitals in which the
odd fermions lie. In the fifth column the values of the LEC C� are shown.

B. E2 properties of involved even-even nuclei

Is it possible to associate the disagreement of the ratios for � decays in Eqs. (35) and (36) with experimental to a
“lack of collectivity” of the excited even-even states? Can inconsistencies between predicted and experimental electric
quadrupole (E2) properties of the even-even excited states signal inconsistencies regarding �-decay matrix elements?
To address these questions we study the E2 properties of the even-even nuclei involved the the studied � decays.
The terms of the E2 operator relevant for the description of E2 transition strengths and static moments in even-even
nuclei are

Q̂ = Q
0

⇣

d† + d̃
⌘

+Q
1

⇣

d† ⌦ d̃
⌘

(2)

. (39)

Here, the first term couples states di↵ering by one phonon and enters in the LO description of phonon-annihilating
E2 transition, while the second couples states with the same phonon number, thus entering in the description of E2

PPQ	model	lof(ft)gs	gs values	with	EFT	uncertainties



Summary

The	EFT	approach	employed	to	describe	spherical	nuclei	consistently	describes	the	spectra,	E2	
and	M1	properties	of	these	systems	at	low	energies

The	systematic	construction	of	the	Hamiltonian	and	transition	operators	allows	for	the	
estimation	of	uncertainties

Assuming	a	simple	form	for	low-lying	odd-odd	nuclei,	a	description	of	𝛽 decays	from	the	later	
is	attempted.	The	sizes	of	the	matrix	elements	for	decays	to	excited	states	relative	to	the	
matrix	element	for	the	decay	to	the	ground	state	scale	as	expected

An	identification	of	the	matrix	elements	for	the	decay	to	the	ground	state	calculated	within	a	
PPQ	model	to	those	calculated	within	the	EFT,	allows	for	the	“calculation”	of	the	relevant	LEC.	
This	increases	the	EFT’s	predictive	power	and	provides	the	model	with	uncertainty	estimates
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