Integrating ab initio structure models into accurate reaction calculations using EFT

Pierre Capel, Daniel Phillips and Hans-Werner Hammer

13 March 2017

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure : neutrons tunnel far from the core and form a halo

Two-neutron halo

Proton haloes are possible but less probable : ⁸B, ¹⁷F

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}Be)= 13 \text{ s}]$ \Rightarrow require indirect techniques, like reactions

Elastic scattering

Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

Framework

Projectile (P) modelled as a two-body system : core (c)+loosely bound nucleon (f) described by

- $H_0 = T_r + V_{cf}(\boldsymbol{r})$
- V_{cf} adjusted to reproduce bound state Φ_0 and resonances
- Target T seen as structureless particle

P-T interaction simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

$$\left[T_{R} + H_{0} + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_{T}\Psi(\boldsymbol{r},\boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

Dynamical eikonal approximation (DEA)

Three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with condition $\Psi \mathop{\longrightarrow}\limits_{Z \to -\infty} e^{i K Z} \Phi_0$

Eikonal approximation : factorise $\Psi = e^{iKZ}\widehat{\Psi}$

$$T_R \Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu_{PT}}{2}v^2] \widehat{\Psi}$$

Neglecting T_R vs P_Z and using $E_T = \frac{1}{2}\mu_{PT}v^2 + \epsilon_0$

$$i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z)$$

solved for each **b** with condition $\widehat{\Psi} \underset{Z \to -\infty}{\longrightarrow} \Phi_0(\mathbf{r})$ This is the dynamical eikonal approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

(Usual) eikonal includes the adiabatic approximation : $(H_0 - \epsilon_0) \approx 0$

$^{11}\text{Be} \equiv {}^{10}\text{Be} \otimes \text{n}$

- $\frac{1}{2}^+$ ground state : $\epsilon_{1^+} = -0.504 \text{ MeV}$ In our model, seen as $1s_{\frac{1}{2}}$ neutron bound to ${}^{10}\text{Be}(0^+)$ • $\frac{1}{2}$ bound excited state : $\epsilon_{1^{-}} = -0.184 \text{ MeV}$ In our model, seen as $0p_{\frac{1}{2}}$ neutron bound to ${}^{10}\text{Be}(0^+)$ • $\frac{5}{2}^+$ bound excited state :
 - $\frac{3}{2}$ bound excited state : $\epsilon_{\frac{5}{2}^+} = 1.274 \text{ MeV}$ In our model, seen as a $d_{\frac{5}{2}}$ resonance

Usual phenomenological description

In reaction models, projectile \equiv two-body system :

 $H_0 = T_r + V_{cn}(\mathbf{r}),$

where V_{cn} is a phenomenological Woods-Saxon that reproduces the basic nuclear properties of the projectile (binding energy, $J^{\pi},...$)

Nowadays ab initio calculations of such exotic nuclei are available Can we use them within a reaction code?

But do we need to go that far?

Breakup reactions are mostly peripheral, i.e., probe :

- ANC of the ground state [P.C. & Nunes, PRC 75, 054609 (2007)]
- phaseshifts in the continuum [P.C. & Nunes, PRC 73, 014615 (2006)]

 \Rightarrow constrain two-body description by ab initio prediction

Ab initio calculation

Ab initio description of ¹¹Be

A recent ab initio calculation of ¹¹Be has been performed [A. Calci et al. PRL 117, 242501 (2016)]

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the {}^{10}Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

Difficult to reproduce the shell inversion \Rightarrow include phenomenology to obtain the correct ordering

Ab initio description of ¹¹Be bound states

• $\frac{1}{2}^+$ ground state : $\overline{\epsilon_{\frac{1}{2}^+}} = -0.500 \text{ MeV}$ $C_{\frac{1}{2}^+} = 0.786 \text{ fm}^{-1/2}$ $\tilde{S}_{1s\frac{1}{2}} = 0.90$ • $\frac{1}{2}^{-}$ bound excited state : $\epsilon_{\frac{1}{2}^{-}} = -0.184 \text{ MeV}$

$$C_{\frac{1}{2}^{-}} = 0.129 \text{ fm}^{-1/2}$$

 $S_{0p\frac{1}{2}}^{-} = 0.85$

Ab initio description of ¹⁰Be-n continuum

Provides the most accurate calculation for the ¹⁰Be-n continuum

FIG. 3. The $n + {}^{10}$ Be phase shifts as a function of the kinetic energy in the center-of-mass frame. NCSMC phase shifts for the N²LO_{SAT} interaction are compared for two model spaces indicated by N_{max} .

Idea : constrain the ¹⁰Be-n potential in the reaction code to reproduce ab initio bound states ANC and δ_{lj} .

¹⁰Be-n potential

Replace the ¹⁰Be-n interaction by effective potentials in each partial wave

Use the spirit of halo EFT : separation of scales (in energy or in distance)

Use narrow Gaussian potentials

$$V_{lj}(r) = V_0 \ e^{-\frac{r^2}{2\sigma^2}} + V_2 \ r^2 e^{-\frac{r^2}{2\sigma^2}}$$

Fit V_0 and V_2 to reproduce ϵ_{lj} , and C_{lj} (bound states)

or Γ_{lj} for resonances

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

$s_{rac{1}{2}}^{1}$: potentials fitted to $\epsilon_{rac{1}{2}^{+}}$ and $C_{rac{1}{2}^{+}}$

Potentials fitted to $\epsilon_{1s\frac{1}{2}}$ = -0.504 MeV and $C_{1s\frac{1}{2}}$ = 0.786 fm^{-1/2}

Ground-state wave function

- Wave functions : same asymptotics but different interior
- $\delta_{s\frac{1}{2}}$: all effective potentials are in good agreement with ab initio up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p\frac{1}{2}$ (excited bound state)

$drac{5}{2}$: potentials fitted to $\epsilon^{ m res}_{rac{5}{2}^+}$ and $\Gamma_{rac{5}{2}^+}$

- Identical $\delta_{d\frac{5}{2}}$ up to 1.5 MeV up to 5 MeV for the narrow potentials (σ = 1.2 or 1.5 fm)
- Excellent agreement with ab initio results up to 2 MeV

p_2^3 and d_2^3 : potentials fitted to $\epsilon^{ m res}$ and Γ

- Large variation in δ obtained by effective potentials Broad potential (σ = 2 fm) cannot reproduce correct behaviour
- Fair agreement with ab initio results up to 2.5 MeV
- ¹⁰Be core excitation @ 3.4 MeV not described in effective model

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

Folded with experimental resolution

Major differences in p_{3/2} partial wave ; due to differences in δ<sub>p_{3/2}
</sub>

- Broad potential ($\sigma = 2$ fm) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with data [Fukuda et al. PRC 70, 054606 (2004)]

Role of $\delta_{p3/2}$

Calculations repeated with different potentials (σ = 1.2, 1.5 or 2 fm) but in $p_{3/2}$, where σ = 1 fm (perfect agreement with ab initio)

All potentials provide the same $p_{3/2}$ contribution

- confirms the peripherality of reaction (no influence of the internal part)
- shows the significant role of phaseshifts

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

- Good agreement with experiment [Fukuda et al. PRC 70, 054606 (2004)]
- All potentials provide similar cross sections
 (σ = 2 fm slightly lower)

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

• All potentials produce similar breakup cross sections (but $\sigma = 2 \text{ fm}$)

- In nuclear breakup, resonances play significant role
- Order of magnitude of experiment well reproduced
- But resonant breakup not correctly described due to short-range details missing in the effective model (?)

Effect of core-excitation in resonant breakup $^{11}Be+C \rightarrow ^{10}Be+n+C @ 67AMeV$ computed in an extended DWBA model including core excitation [A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

- Breakup due to the excitation of the valence neutron and of the core are considered
- Both are needed to reproduce the oscillatory pattern of experiment
- Core excitation dominates the $\frac{3}{2}^+$ resonant breakup
- Confirms the missing short-range details in our effective model

SF vs ANC

Calci *et al.* predict $S_{1s\frac{1}{2}} = 0.90$, but we use $S_{1s\frac{1}{2}} = 1...$

 \Rightarrow repeat calculations with $S_{1s\frac{1}{2}} = 0.90$ (keeping $C_{\frac{1}{2}^+} = 0.786$ fm^{-1/2})

No difference \Rightarrow SF cannot be extracted from these measurements One exception : resonant breakup, where SF plays a role \Rightarrow influence of the short-range details (?)

Summary and prospect

- Exotic nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood How to improve the projectile description in reaction models ?
- Ab initio models too expensive to be used in reaction codes
 ⇒ include the predictions that matter in effective model
- Using Gaussian potentials, we reproduce the ANC and phase shifts predicted by ab initio calculations
- Our study confirms
 - peripherality of breakup reactions
 - influence of the continuum through phase shifts
- Using ab initio predictions gives excellent agreement with data
 - efficient way to include the significant degrees of freedom
 - provides an estimate the influence of omitted mechanisms e.g., resonances include short-range details

Thanks to my collaborators

Daniel Baye Gerald Goldstein

Achim Schwenk Hans-Werner Hammer

Daniel Phillips

Filomena Nunes

 $p_{rac{1}{2}}^{rac{1}{2}}$: potentials fitted to $\epsilon_{rac{1}{2}^{-}}$ and $C_{rac{1}{2}^{-}}$

Potentials fitted to $\epsilon_{0p\frac{1}{2}} = -0.184$ MeV and $C_{0p\frac{1}{2}} = 0.129$ fm^{-1/2} Excited-state wave function $p_{1/2}$ phaseshifts

Wave functions : same asymptotics but different interior

• Larger variation in $\delta_{p\frac{1}{2}}$ obtained by effective potentials Fair agreement with ab initio results up to 1 MeV Summary

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV (forward angles)

Total breakup cross section and p contributions

Folded with experimental resolution [Fukuda et al. PRC 70, 054606 (2004)]

- Major differences in p_{3/2} partial wave ; due to differences in δ<sub>p_{3/2}
 </sub>
- Broad potential ($\sigma = 2 \text{ fm}$) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with experiment