Integrating ab initio structure models into accurate reaction calculations using EFT

Pierre Capel, Daniel Phillips and Hans-Werner Hammer

13 March 2017

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- **•** Light, n-rich nuclei
- \bullet Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure : neutrons tunnel far from the core and form a halo

```
One-neutron halo
^{11}Be \equiv ^{10}Be + n
```

$$
{}^{15}C \equiv {}^{14}C + n
$$

Two-neutron halo

$$
{}^{6}\text{He} \equiv {}^{4}\text{He} + \text{n} + \text{n}
$$

$$
{}^{11}\text{Li} \equiv {}^{9}\text{Li} + \text{n} + \text{n}
$$

Proton haloes are possible but less probable : ${}^{8}B$, ${}^{17}F$

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(11Be) = 13 \text{ s}]$
 \rightarrow require indirect toobniques, like req ⇒ require indirect techniques, like reactions

Elastic scattering

Breakup \equiv dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

Framework

Projectile (*P*) modelled as a two-body system : core (*c*)+loosely bound nucleon (*f*) described by

- $H_0 = T_r + V_{cf}(r)$
- *V_{cf}* adjusted to reproduce bound state Φ_0 and resonances
- Target *T* seen as structureless particle

P-*T* interaction simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

$$
\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\mathbf{r}, \mathbf{R}) = E_T\Psi(\mathbf{r}, \mathbf{R})
$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \longrightarrow e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

Dynamical eikonal approximation (DEA)

Three-body scattering problem :

$$
\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\mathbf{r}, \mathbf{R}) = E_T\Psi(\mathbf{r}, \mathbf{R})
$$

with condition $\Psi \underset{Z \to -\infty}{\longrightarrow} e^{iKZ} \Phi_0$

Eikonal approximation : factorise $\Psi = e^{iKZ}\Psi$

$$
T_R \Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu_{PT}}{2} v^2] \widehat{\Psi}
$$

Neglecting T_R vs P_Z and using $E_T = \frac{1}{2}$ $\frac{1}{2}\mu_{PT}v^2 + \epsilon_0$

$$
i\hbar v \frac{\partial}{\partial z} \widehat{\Psi}(\mathbf{r}, \mathbf{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\mathbf{r}, \mathbf{b}, Z)
$$

solved for each b with condition $\Psi \underset{Z \rightarrow -\infty}{\longrightarrow} \Phi_0(\pmb{r})$ This is the dynamical eikonal approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

(Usual) eikonal includes the adiabatic approximation : $(H_0 - \epsilon_0) \approx 0$

¹¹Be \equiv ¹⁰Be ⊗ n

1 2 + ground state : $\epsilon_{\frac{1}{2}^+} = -0.504 \text{ MeV}$ \ln^2 our model, seen as $1s_{\frac{1}{2}}$ neutron bound to 10 Be($0^+)$ 1 2 − bound excited state : $\epsilon_{\frac{1}{2}}$ = -0.184 MeV

 $\overline{\mathsf{In}}$ our model, seen as $0p_{\frac{1}{2}}$ neutron

bound to 10 Be($0^{+})$

5 2 + bound excited state : $\epsilon_{\frac{5}{2}^+}$ = 1.274 MeV $\mathsf{I}^\mathsf{a}_\mathsf{n}$ our model, seen as a $d_\frac52$ resonance

Usual phenomenological description

In reaction models, projectile \equiv two-body system :

 $H_0 = T_r + V_{cn}(r)$,

where *Vc*ⁿ is a phenomenological Woods-Saxon that reproduces the basic nuclear properties of the projectile (binding energy, J^{π}, \dots)

Nowadays ab initio calculations of such exotic nuclei are available Can we use them within a reaction code ?

But do we need to go that far ?

Breakup reactions are mostly peripheral, i.e., probe :

- ANC of the ground state $[PC. 8 \text{ Nunes}, PRC 75, 054609 (2007)]$
- phaseshifts in the continuum [P.C. & Nunes, PRC 73, 014615 (2006)]

 \Rightarrow constrain two-body description by ab initio prediction

Ab initio description of 11 Be

A recent ab initio calculation of 11 Be has been performed [A. Calci et al. PRL 117, 242501 (2016)]

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}Be$ threshold. Dashed black lines indicate the energies of the ¹⁰Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

Difficult to reproduce the shell inversion \Rightarrow include phenomenology to obtain the correct ordering [1], while all ab initio calculations concordantly predict it to be positive. The bound-state energies as well as the resonance

Ab initio description of $¹¹$ Be bound states</sup>

1 2 $^+$ ground state : $\epsilon_{\frac{1}{2}^+} = -0.500 \text{ MeV}$ $C_{\frac{1}{2}^+}$ = 0.786 fm^{-1/2} $S_{1s\frac{1}{2}}^{2}=0.90$ 1 2 − bound excited state : $\epsilon_{\frac{1}{2}}$ = -0.184 MeV $\mathcal{C}_{\frac{1}{2}^-}$ = 0.129 fm^{-1/2} $S_{0p\frac{1}{2}} = 0.85$

Ab initio description of 10 Be-n continuum electric-dipole (E1) transitions, which probe the structure

Provides the most accurate calculation for the 10 Be-n continuum \ddotsc 10 \ddotsc 470 \ddotsc 470 \ddotsc p_{out} and p_{out} observables using the structure struc

FIG. 3. The $n + {}^{10}$ Be phase shifts as a function of the kinetic energy in the center-of-mass frame. NCSMC phase shifts for the N^2LO_{SAT} interaction are compared for two model spaces indicated by N_{max} .

I Idea : constrain the 10 Be-n potential in the reaction code to reproduce ab initio bound states ANC and δ_{li} .

 $10B$ e-n potential

Replace the $10B$ e-n interaction by effective potentials in each partial wave

Use the spirit of halo EFT : separation of scales (in energy or in distance)

Use narrow Gaussian potentials

$$
V_{lj}(r) = V_0 e^{-\frac{r^2}{2\sigma^2}} + V_2 r^2 e^{-\frac{r^2}{2\sigma^2}}
$$

Fit V_0 and V_2 to reproduce ϵ_{li} , and C_{li} (bound states)

or Γ_{li} for resonances

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

 $s\frac{1}{2}$ $\frac{1}{2}$: potentials fitted to $\epsilon_{\frac{1}{2}^+}$ and $C_{\frac{1}{2}^-}$ +

Potentials fitted to $\epsilon_{1s\frac{1}{2}} = -0.504$ MeV and $C_{1s\frac{1}{2}} = 0.786$ fm^{-1/2}

Ground-state wave function

 $s\frac{1}{2}$ $\frac{1}{2}$ phaseshifts

- Wave functions : same asymptotics but different interior
- $\delta_{s\frac{1}{2}}$: all effective potentials are in good agreement with ab initional state of $\delta_{s\frac{1}{2}}$ up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p\frac{1}{2}$ $\frac{1}{2}$ (excited bound state)

 $d_{\frac{5}{2}}^{5}$ $\frac{5}{2}$: potentials fitted to $\epsilon_{\frac{5}{2}^+}^{\text{res}}$ $\frac{5}{2}$ $_{\rm *}^{\rm ss}$ and $\Gamma_{\rm \frac{5}{2}}$ +

- <u>Identical</u> $\delta_{d\frac{5}{2}}$ up to 1.5 MeV
up to 5 MeV for the narrow up to 5 MeV for the narrow potentials (σ = 1.2 or 1.5 fm)
Excellent agreement with ab initio results up to 2 MeV
- Excellent agreement with ab initio results up to 2 MeV

 $p_{\overline{2}}^3$ $rac{3}{2}$ and $d\frac{3}{2}$ $\frac{3}{2}$: potentials fitted to ϵ^{res} and Γ

- Large variation in δ obtained by effective potentials Broad potential ($\sigma = 2$ fm) cannot reproduce correct behaviour
- Fair agreement with ab initio results up to 2.5 MeV
- \bullet ¹⁰Be core excitation @ 3.4 MeV not described in effective model

¹¹Be+Pb→¹⁰Be+n+Pb @ 69*A*MeV

Total breakup cross section and *p* contributions

Folded with experimental resolution

• Major differences in $p_{3/2}$ partial wave; due to differences in $\delta_{p_{3/2}}$

- **•** Broad potential (σ = 2 fm) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with data [Fukuda et al. PRC 70, 054606 (2004)]

Role of $\delta_{p3/2}$

Calculations repeated with different potentials (σ = 1.2, 1.5 or 2 fm) but in $p_{3/2}$, where $\sigma = 1$ fm (perfect agreement with ab initio)

All potentials provide the same $p_{3/2}$ contribution

- confirms the peripherality of reaction (no influence of the internal part)
- shows the significant role of phaseshifts

¹¹Be+Pb→¹⁰Be+n+Pb @ 69*A*MeV

- Good agreement with experiment [Fukuda et al. PRC 70, 054606 (2004)]
- All potentials provide similar cross sections $(\sigma = 2$ fm slightly lower)

 11 Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

- All potentials produce similar breakup cross sections (but $\sigma = 2$ fm)
- In nuclear breakup, resonances play significant role
- Order of magnitude of experiment well reproduced
- But resonant breakup not correctly described due to short-range details missing in the effective model (?)

Effect of core-excitation in resonant breakup ¹¹Be+C→¹⁰Be+n+C @ 67*A*MeV computed in an extended DWBA model including core excitation [A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

- \bullet Breakup due to the excitation of the valence neutron and of the core are considered. that the presence of core admixtures in the initial and final
- \blacktriangleright Both are needed to reproduce the oscillatory pattern of experiment
- \bullet Core excitation dominates the $\frac{3}{2}$ resonant breakup +
- **Confirms the missing short-range** details in our effective model

SF vs ANC

Calci *et al.* predict $S_{1s\frac{1}{2}} = 0.90$, but we use $S_{1s\frac{1}{2}} = 1...$
 \Rightarrow repeat calculations with $S_{1s} = 0.90$ (keeping $C_{1s} =$

⇒ repeat calculations with $S_{1s\frac{1}{2}} = 0.90$ (keeping $C_{\frac{1}{2}^+} = 0.786$ fm^{-1/2})

No difference \Rightarrow SF cannot be extracted from these measurements One exception : resonant breakup, where SF plays a role \Rightarrow influence of the short-range details (?)

Summary and prospect

- Exotic nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood How to improve the projectile description in reaction models ?
- Ab initio models too expensive to be used in reaction codes \Rightarrow include the predictions that matter in effective model
- Using Gaussian potentials, we reproduce the ANC and phase shifts predicted by ab initio calculations
- Our study confirms
	- \rightarrow peripherality of breakup reactions
	- \cdot influence of the continuum through phase shifts
- Using ab initio predictions gives excellent agreement with data
	- \rightarrow efficient way to include the significant degrees of freedom
	- \rightarrow provides an estimate the influence of omitted mechanisms e.g., resonances include short-range details

Thanks to my collaborators

Daniel Baye Gerald Goldstein

Achim Schwenk Hans-Werner Hammer

Daniel Phillips

Filomena Nunes

 $p\frac{1}{2}$ $\frac{1}{2}$: potentials fitted to $\epsilon_{\frac{1}{2}^-}$ and $C_{\frac{1}{2}^-}$ −

Potentials fitted to $\epsilon_{0p\frac{1}{2}} = -0.184$ MeV and $C_{0p\frac{1}{2}} = 0.129$ fm^{-1/2} Excited-state wave function *^p*1/² phaseshifts

• Wave functions : same asymptotics but different interior

Larger variation in $\delta_{p\frac{1}{2}}$ obtained by effective potentials
Fair agreement with ab initio results up to 1 MeV Fair agreement with ab initio results up to 1 MeV

[Summary](#page-23-0)

¹¹Be+Pb→¹⁰Be+n+Pb @ 69AMeV (forward angles)

Total breakup cross section and *p* contributions

Folded with experimental resolution [Fukuda et al. PRC 70, 054606 (2004)]

• Major differences in $p_{3/2}$ partial wave; due to differences in $\delta_{p_{3/2}}$

- Broad potential ($\sigma = 2$ fm) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with experiment