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Halo nuclei

Halo nuclei

Exotic nuclear structures are found far from stability
In particular halo nuclei with
peculiar quantal structure :

@ Light, n-rich nuclei
@ Low S, or S,

Exhibit large matter radius
due to strongly clusterised structure :
neutrons tunnel far from the core and form a halo

11Be = 19Be + n
5c=14C+n ?
Two-neutron halo

Wl Noyau stable

6 _4 [@ Noyau riche en neutrons
He="He+n+n [ Novau sche en protons
11y : 9 : [[] Noyau halo d'un neutron
|_| = L| +N+N [@ Noyau halo de deux neutrons
[] Noyau halo d’un proton

Proton haloes are possible but less probable : B, I7F



Halo nuclei

Reactions with halo nuclei

Halo nuclei are fascinating objects
but difficult to study [} ,,(''Be)= 13 s]

= require indirect techniques, like reactions

Elastic scattering

Breakup = dissociation of halo from core
by interaction with target

Need good understanding of the reaction mechanism
i.e. an accurate theoretical description of reaction
coupled to a realistic model of projectile



Halo nuclei

Framework

(7) modelled as a two-body system :
core (c)+loosely bound nucleon (f) described by

Hy=T, + ch(l‘)
V.r adjusted to reproduce

bound state @,
and resonances

Target T seen as
structureless particle

P-T interaction simulated by optical potentials
= breakup reduces to three-body scattering problem :

|Tx + Ho + Ver + Vir | ¥(r. R) = Ep'¥(r. R)

with initial condition ¥(r, R) — X%~ ®y(r)
Z——0



Halo nuclei

Dynamical eikonal approximation (DEA)
Three-body scattering problem :

|Tx + Ho + Ver + Vir | (. R) = Ep'¥(r. R)

with condition ¥ — X% ®,

Z——00

Eikonal approximation : factorise ¥ = /Xy

T‘I’_e’KZ[TR+vPZ+’u T2

]‘I’
Neglecting Tk vs P, and using Er = %IUPTV + &
0 — —

ihv&‘l’(r, b,Z) = [H() —e+Vor+ VfT]\P(l‘, b,Z)

solved for each b with condition @Z—> Dy(r)

This is the dynamical eikonal approximation (DEA)
[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

(Usual) eikonal includes the adiabatic approximation : (Hy — ) ~ 0



Projectile description

1Be = 1'Be @ n

1+

@ 5 ground state :
L €+ = —0.504 MeV
[L0.73 10 59 (11/2) 5/ 2
g 40 0.60 In our model, seen as 1s; neutron
8813 37 (02) -S28% 10 2
802082012 yy|  Bethn bound to "“Be(0%)

- 7.3139
7.10 5/2 770

20 L0 (52) 9Be+2n - .
ﬁﬁ%@ﬁ% * e 1" bound excited state :
€1~ = —0.184 MeV

BRI 3y S 2
2654 ) In our model, seen as Op1 neutron
0.32004 12" 10(%& bound tO 1OBe(O-'—)
T A + .
a2 @ 3" bound excited state :
IBe €5+ = 1.274 MeV

2
In our model, seen as a d% resonance



Projectile description Ab initio calculation

Usual phenomenological description
In reaction models, projectile = two-body system :
Ho =T, + Ven(r),

where V., is a phenomenological Woods-Saxon that reproduces the basic
nuclear properties of the projectile (binding energy, J*,...)

Nowadays ab initio calculations of such exotic nuclei are available
Can we use them within a reaction code ?

But do we need to go that far ?
Breakup reactions are mostly peripheral, i.e., probe :

@ ANC of the ground state [P.C. & Nunes, PRC 75, 054609 (2007)]
@ phaseshifts in the continuum [P.C. & Nunes, PRC 73, 014615 (2006)]

= constrain two-body description by ab initio prediction



Projectile description Ab initio calculation

Ab initio description of !'Be

A recent ab initio calculation of !'Be has been performed
[A. Calci et al. PRL 117, 242501 (2016)]
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FIG. 2. NCSMC spectrum of ''Be with respect to the n + '°Be threshold. Dashed black lines indicate the energies of the 'Be states.
Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

Difficult to reproduce the shell inversion
= include phenomenology to obtain the correct ordering



Projectile description Ab initio calculation

Ab initio description of ''Be bound states

120
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o 1" ground state :
€1+ = —0.500 MeV
2
C,+ =0.786 fm~1/2
2
Siyy =0.90
e 1 bound excited state :
€~ = —0.184 MeV
2
Ci- =0.129 fm~1/2
2
S =0.85

Op%



sl etz
Ab initio description of 'Be-n continuum

Provides the most accurate calculation for the °Be-n continuum
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FIG.3. Then + '°Bephaseshiftsasafunctionofthe kineticenergy
in the center-of-mass frame. NCSMC phase shifts for the N>LOg a1
interaction are compared for two model spaces indicated by N .

ldea : constrain the '°Be-n potential in the reaction code
to reproduce ab initio bound states ANC and ¢;;.



EfbciveiiEe
1'Be-n potential

Replace the °Be-n interaction by effective potentials in each partial wave
Use the spirit of halo EFT : separation of scales (in energy or in distance)

Use narrow Gaussian potentials

2 2

a

Vij(r) = Vo e 272 + Vy rle 22

Fit Vo and V> to reproduce ¢, and C;; (bound states)
or I';; for resonances

o =1.2,150r2fmis a parameter used to evaluate the sensitivity of the
calculations to this effective model



Projectile description Effective ! Be

s : potentials fitted to e and Cy

Potentials fitted to €;,; = ~0.504 MeV and C; 1 = 0.786 fm~'/?

@0,

Ground-state wave function

s3 phaseshifts

i Ab initio - - -
\
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@ Wave functions : same asymptotics but different interior
: all effective potentials are in good agreement with ab initio

up to 1.5 MeV (same effective-range expansion)

@ Similar results obtained for p% (excited bound state)



Efecive 8o
d3 : potentials fitted to € and I's-
5 2
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wl T
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=
2 ef
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o=1.5fm — —
. 6=2.0fm ...
0 4 5

@ Identical 6,5 up to 1.5 MeV
up to 5 MeV for the narrow potentials (- = 1.2 or 1.5 fm)
@ Excellent agreement with ab initio results up to 2 MeV



Efeive 182
p3 and d3 : potentials fitted to €™ and T

3 3
p3 d3
— o0=1.2im T o=1.2Mm '
—— 0=1.5fm - o-=;_g;m
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—.-o=1fm --- Ab initio
--- Ab initio 180 -
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100

@ Large variation in ¢ obtained by effective potentials
Broad potential (- = 2 fm) cannot reproduce correct behaviour

@ Fair agreement with ab initio results up to 2.5 MeV
@ '9Be core excitation @ 3.4 MeV not described in effective model



Efectve ' Be
"Be+Pb—1°Be+n+Pb @ 69AMeV

oy, /E (b/MeV)

Total breakup cross section
and p contributions

' ' ' ' o=1.2fm —

o=1.5im —— |

S o=2fm
Exp. (6<6) ——

Folded with experimental resolution

doy,/dE (b/MeV)

o=1.2fm —
o=1.5fm —— |
o=2fm
Exp. (6<6) ——

E (MeV)

@ Major differences in p3,; partial wave ; due to differences in ¢, ,
@ Broad potential (o- = 2 fm) produces unrealistic p3,, contribution
@ Excellent agreement with data [Fukuda et al. PRC 70, 054606 (2004)]



Projectile description Effective ! Be

Role of 5173/2
Calculations repeated with different potentials (o = 1.2, 1.5 or 2 fm)
but in p3,2, where o = 1 fm (perfect agreement with ab initio)

6=1.2fm (c 1fm’in p3/2
6=1.5fm (o=1fmin p3/2) —

o=2fm (c_1fm in p3/2
p. (6<6

—_——

0.8 -

oy, /dE (b/MeV)

0.6

0.4

0.2

E (MeV)

All potentials provide the same ps3,, contribution
@ confirms the peripherality of reaction (no influence of the internal part)
@ shows the significant role of phaseshifts



Projectile description Effective !!Be

"Be+Pb—1°Be+n+Pb @ 69AMeV

1000

o=1.2fm —

o=1.5fm — —
o=2fm.....

Exp. (E=0-1 MeV) —— 1

100 -

doy,/dQ (bst)

0.1 H

0.01

@ Good agreement with experiment [Fukuda et al. PRC 70, 054606 (2004)]

@ All potentials provide similar cross sections
(o = 2 fm slightly lower)



Efectve ' Be
"Be+C—''Be+n+C @ 67AMeV

oy, /dE (bIMeV)

Total breakup cross section
and dominant contributions

o=1.2fm —

o=1.5fm ——
o=2fm

Folded with experimental resolution
[Fukuda et al. PRC 70, 054606 (2004)]

004
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0.035 ++++
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@ All potentials produce similar breakup cross sections (but o = 2 fm)

@ In nuclear breakup, resonances play significant role

@ Order of magnitude of experiment well reproduced

@ But resonant breakup not correctly described
due to short-range details missing in the effective model (?)



Projectile description Effective ! Be

Effect of core-excitation in resonant breakup
"Be+C—!"Be+n+C @ 67AMeV

computed in an extended DWBA model including core excitation
[A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

o camueves)  (—wa 13 o Breakup due to the excitation
of the valence neutron and
of the core are considered
e Both are needed to reproduce the
oscillatory pattern of experiment

o Core excitation dominates the 3*
resonant breakup

e Confirms the missing short-range
details in our effective model

- (mb/sr)

doldQ,




Projectile description Effective ! Be

SF vs ANC
Calci et al. predict S, = 0.90, but we use S, = 1...
= repeat calculations with S, = 0.90 (keeping C,- = 0.786 fm=1/2)

1"Be+Pb—!°Be+n+Pb 11Be+C—1Be+n+C
" ‘ ‘ ‘ T o=1.2fm (SF=1) — o ‘ ‘ ‘ T g=1.2fm (SF=1) —
o=1.2im (SF=0.9) --- | =1.2im (SF=0.9) ---

Goy,/dE (bMeV)
Goj,/OE (biMeV)

25 3 35 4 0 05 1 15 25 3 35 4

0 05 1 15

2 2
E (MeV) E (MeV)

No difference = SF cannot be extracted from these measurements
One exception : resonant breakup, where SF plays a role
= influence of the short-range details (?)



Summary and prospect

e Exotic nuclei studied mostly through reactions

@ Mechanism of reactions with halo nuclei understood
How to improve the projectile description in reaction models ?
@ Ab initio models too expensive to be used in reaction codes
= include the predictions that matter in effective model
@ Using Gaussian potentials, we reproduce the ANC
and phase shifts predicted by ab initio calculations
@ Our study confirms
> peripherality of breakup reactions
> influence of the continuum through phase shifts
e Using ab initio predictions gives excellent agreement with data
» efficient way to include the significant degrees of freedom
> provides an estimate the influence of omitted mechanisms
e.g., resonances include short-range details
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5 @ potentials fitted to €1- and C%—

Potentials fitted to €),1 = —0.184 MeV and C,,; = 0.129 fm~!/2
P12 phaseshifts
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Ex0|ted state wave function
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@ Wave functions : same asymptotics but different interior
@ Larger variation in ‘9, 1 obtained by effective potentials
Fair agreement with ab initio results up to 1 MeV



Be+Pb—!"Be+n+Pb @ 69AMeV (forward angles)

Total breakup cross section Folded with experimental resolution
and p contributions [Fukuda et al. PRC 70, 054606 (2004)]
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@ Major differences in p3,, partial wave ; due to differences in ¢, ,
@ Broad potential (o- = 2 fm) produces unrealistic p3,, contribution
@ Excellent agreement with experiment
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