

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Predictive Power of Chiral Interactions for Nuclear Structure and Reaction Calculations in the p-Shell

INT Program INT-17-1a March 27 2017, Seattle

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Angelo Calci | TRIUMF

Outline

Outline

many-body eigenvalue problem ab initio description of nuclei

D. |
|} **based int** |
|-**QCD-based interaction**

realistic NN+3N interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,... Chiral Eff based nuclear forces in the chiral effection forces in the case of the chiral experiment of the chiral experi *Chiral EFT based nuclear forces* 12 *Chiral Eff based nuclear forces in the chiral eff based forces in the chiral city in the Chiral Eff based nuclear forces in the chiral spectrum* forces in the content force of the content force of the content forces in the content of t

• standard interaction:

- NN @ N³LO: Entem & Machleidt, 500MeV cutoff (*Q/*⇤)⁰
- 3N @ N2LO: Navrátil, local, 500MeV cutoffs & modifications of the 3N force

• optimized N2LO interaction:

- NN: Ekström et al., 500MeV cutoff, LECs fitted with **POUNDerS** NNLO NNLO NNLO vith $(Q/\Lambda_\chi)^3$
- 3N: Navrátil, local, 500MeV cutoff, fit to ⁴He & Triton

• EGM N2LO interaction:

- NN: Epelbaum et al., 450, ..., 600 MeV cutoff N⁴LO
- 3N: Epelbaum et al., 450, . . . , 600 MeV cutoff, nonlocal (*Q/*⇤)⁵

March 27 2017

RIUMF

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

RIUMF

Next Generation Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

• standard interaction:

- NN @ N³LO: Entem & Machleidt, 500MeV cutoff (*Q/*⇤)⁰
- 3N @ N²LO: Navrátil, local cutoffs

• N2LOSAT interaction:

• NN+3N: Ekström et al., nonlocal 450MeV cutoff, simultaneous fit to NN data and selected many-body observables

• LENPIC interaction:

- NN up to N⁴LO: Epelbaum et al., semi-local cutoff
- 3N up to N³LO: under construction
- **• N4LO(500):**
	- NN @ N4LO: Machleidt et al., 500MeV cutoff

Similarity Renormalization Group (SRG) **accelerate** convergence by **pre-diagonalizing** the Hamiltonian with respect to the many-body basis Similarity Renormalization Group (SRG) **accelerate** convergence by **pre-diagonalizing** the Hamiltonian with respect to the many-body basis **accelerate** convergence by **pre-diagonalizing** the Hamiltonian ■ **unitary transformation** leads to **evolution equation** d **accelerate** convergence by **pre-diagonalizing** the Hamiltonian with respect to the many-body basis

• unitary transformation leads to evolution equation ■ **unitary transformation** leads to **evolution equation** lld
 ry transformation leads to evolution equation α ■ **unitary transformation** leads to **evolution equation**

$$
\frac{d}{d\alpha}\widetilde{H}_{\alpha} = [\eta_{\alpha}, \widetilde{H}_{\alpha}] \quad \text{with} \quad \eta_{\alpha} = (2\mu)^2 [\text{T}_{\text{int}}, \widetilde{H}_{\alpha}] = -\eta_{\alpha}^{\dagger}
$$

advantages of SRG: **flexibility** and **simplicity** advantages of SRG: **flexibility** and **simplicity** and **Binding Corporation** and **Sinding** ages of SRG: **flexibility** and **simplicity** and

Outline

• solving the eigenvalue problem: the eigenvalue problem: ■ **solving the eigenvalue problem** H**|**Ψn**〉 =** En**|**Ψn**〉**

H ! $|\Psi_n\rangle = E_n$ $|\Psi_{n}\rangle$

• model space: ■ **many-body basis**: Slater determinants **|**ν**〉** composed of $\mathbf s$ are single-particle-par

spanned by Slater determinants with unperturbed excitation energy up to N_{max} ħΩ ad by Clater d .
מחⁱחי ν $\overline{}$ ν run $\frac{1}{2}$ with unperturbed excitation energy of up the up that $\frac{1}{2}$ with $\frac{1}{2}$ and \frac

■ **solving the eigenvalue problem** • solving the eigenvalue problem: the eigenvalue problem: H**|**Ψn**〉 =** En**|**Ψn**〉** $e = 3$! $|\Psi_n\rangle = E_n$ $|\Psi_{n}\rangle$ H $e = 2$ ■ **many-body basis**: Slater determinants **|**ν**〉 • model space:** $e = 1$ 000000 composed of harmonic oscillator single-particle $e = 0$ spanned h spanned **by Super determinants with Spanned Association problem of NCSM** -
חסוו*ב* .
ዝናበ $r_{\mathbf{Q}}$ enormous increase of model space with unpertui enormous increase ν ν **ons** . particle number *A* up to *N_{max}h*Ω **N_{mov}ft** $\frac{1}{2}$ with unperturbed excitation energy of up the upper second excitation energy of up the upper second energy of up to $\frac{1}{2}$

particle number A

Importance Truncated NCSM Importance Truncated NCSM

• a priori determination of relevant basis states via first-order ■ a priori determination of relevant basis states via first-order perturbation theory produced in a set α $\langle \Phi_{\nu}$ $\overline{1}$ \mid H $_{\sf int}$ $|\Psi_{\text{ref}}\rangle$

κν **= −**

εν **−** εref 4

• importance truncated space spanned by basis states with lk **|**κν**| ≥** κmin **|**κν**| ≥** κmin

MI

Angelo Calci 8

Importance Truncated NCSM

■ a priori determination of relevant basis states via first-order

particle number A

 $\frac{1}{2}$ with unperturbed excitation energy of up the upper second excitation energy of up the upper second energy of up to $\frac{1}{2}$

MI

Angelo Calci 8

- 16O: Origin of Induced 4N 16O: Origin of Induced 4N 16O: Origin of Induced 4N ■ analyze the sensitivity of spectra on low-energy constants (c_i , c_D , c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO $++$ $+$ $+$ $+$ $+$
	- why this is interesting:
		- **impact of N³LO contributions**: some N³LO diagrams can be absorbed into the N²LO structure by shifting the c_i constants
 $q^2 A^{\pi}$ $q^4 A^{\pi}$ $q^4 A^{\pi}$ $q^4 A^{\pi}$ (Bernard et al.,

$$
\bar{c}_1 = c_1 - \frac{g_A^2 M_\pi}{64\pi F_\pi^2}, \quad \bar{c}_3 = c_3 + \frac{g_A^4 M_\pi}{16\pi F_\pi^2}, \quad \bar{c}_4 = c_4 - \frac{g_A^4 M_\pi}{16\pi F_\pi^2}
$$
 (Bernard et al.,
Ishikawa, Robilotta)

• **uncertainty propagation**: sizable variations of the c_i from different extractions (also affects NN) Nm^x Nm^x Nm^x ● **! "** ncertainty p Nm^x Nm^x Nm^x **Opagation**. Sizable valiations of ● **!" UNCERTANILY PROPAGALION.** SIZADIt Nm^x Nm^x Nm^x $\frac{1}{2}$

 $c_1 = -1.23... - 0.76$, $c_3 = -5.94... - 3.20$, $c_4 = 3.40...5.40$ $[GeV^{-1}]$ Λ **=** 2.24fm**−**¹ Λ **=** 1.88fm**−**¹ Λ **=** 1.58fm**−**¹ ℏΩ **=** 20 MeV $= 0.4$ Λ **=** 2.24fm**−**¹ Λ **=** 1.88fm**−**¹ Λ **=** 1.58fm**−**¹ $\overline{1}$ ℏΩ **=** 20 MeV $\overline{1}$ 0.76 Λ **=** 2.24fm**−**¹ Λ **=** 1.88fm**−**¹ Λ **=** 1.58fm**−**¹

• cutoff dependence: does the cutoff choice in the 3N interaction affect nuclear structure observables?

- 16O: Origin of Induced 4N 16O: Origin of Induced 4N 16O: Origin of Induced 4N ■ analyze the sensitivity of spectra on low-energy constants (c_i , c_D , c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO $+$ $+$ $+$ $+$ $+$ $+$
	- why this is interesting:
		- **impact of N³LO contributions**: some N³LO diagrams can be absorbed into the N²LO structure by shifting the c_i constants
 $q^2 A^{\pi}$ $q^4 A^{\pi}$ $q^4 A^{\pi}$ $q^4 A^{\pi}$ (Bernard et al.,

$$
\bar{c}_1 = c_1 - \frac{g_A^2 M_\pi}{64\pi F_\pi^2}, \quad \bar{c}_3 = c_3 + \frac{g_A^4 M_\pi}{16\pi F_\pi^2}, \quad \bar{c}_4 = c_4 - \frac{g_A^4 M_\pi}{16\pi F_\pi^2}
$$
 (Bernard et al.,
Ishikawa, Robilotta)

- **uncertainty propagation**: sizable variation and the contrainty propagation: sizable variante contrainty different extractions (also affects NN) $c_1 = -1.23... -0.76$, $c_3 = -5.94... -3$ **Hamiltonians and 2 6 and provide constraints** for chiral Hamiltonians and **quantify** Nm^x Nm^x Nm^x Nmx (1999) and the state of ● **! "** Λ **=** 2.24fm**−**¹ Λ **=** 1.88fm**−**¹ Λ **=** 1.58fm**−**¹ ℏΩ **=** 20 MeV Nm^x Nm^x Nm^x **C directed inty propagation**. Sizable **2** ● **!" d** \overline{P} 0.16 \overline{P} \mathcal{L}_1 \mathcal{L}_2 = −5.94… − 1. $\overline{1}$ ℏΩ **=** 20 MeV Nm^x Nm^x Nm^x $\frac{1}{2}$ $\overline{1}$ 0.76 Λ **=** 2.24fm**−**¹ Λ **=** 1.88fm**−**¹ Λ **=** 1.58fm**−**¹
	- **cutoff dependence**: does the cutoff **change interactional dependence**: does the cutoff concertainties on affect nuclear structure observables?

- many states many states are rather independent are rather *ci*
	- \ddotsc fixet \ddotsc • first $1+$ state shows strong *c3* dependence

ℏΩ **=** 16 MeV ℏΩ **=** 16 MeV $N_{\text{max}} = 8$ $\alpha = 0.08$ fm 4 **IT-NCSM**

П

and the contract of the Cutoff of the Cu 12C: Sensitivity to *c_D and cutoff*

- on *c_D*, $\frac{1}{2}$ ctronger stronger dependependence moderate dependence stronger on Λ
- again first 1**⁺** • again first 1^+ state is most sensitive

 $\hbar\Omega = 16$ MeV **IT-NCSM**

 $N_{\text{max}} = 8$ $\alpha = 0.08$ fm⁴ α *b* 0.00 m

Correlation Analysis: 12C(1+) vs. 10B(1+) Correlation Analysis: 12C**(**1**+)** vs. 10B**(**1**+)** Correlation Analysis: 12C**(**1**+)** vs. 10B**(**1**+)**

- correlation does not agree with experiment
- **+** exp $\overline{}$ with E&M NN interaction

• small cutoff dependence for NN+3N

POTRIUMF

10B: Cutoff Dependence (10B: Cutoff Dependence de la Cutoff Dependence de la Cutoff Dependence de la Cutoff
10B: Cutoff Dependence de la Cutoff Dependence de la Cutoff Dependence de la Cutoff Dependence de la Cutoff D 12C: Cutoff Dependence (12C: Cutoff Dependence de la Constantino de la Constantino de la Constantino de la Con
12C: Cutoff Dependence (12C: Cutoff Dependence de la Constantino de la Constantino de la Constantino de la Co

n Chiral Order der N3LO+N2LO \int hiral \int rdar \int 12C: Cutoff Dependence (1982)
12C: Cutoff Dependence (1982)
12C: Cutoff Dependence (1982) ndence on Chiral Order N2LO+N2LO 450000 α MeV α

standard

Epelbaum

Li: Alternative Interactions

Correlation Analysis: 12C(1+) vs. 10B(1+) Correlation Analysis: 12C**(**1**+)** vs. 10B**(**1**+)** Correlation Analysis: 12C**(**1**+)** vs. 10B**(**1**+)**

Outline

RIUMF

PRL 117, 242501 (2016) PHYSICAL REVIEW LETTERS week ending week ending

9 DECEMBER 2016

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ¹¹Be?

Angelo Calci,^{1,*} Petr Navrátil,^{1,†} Robert Roth,² Jérémy Dohet-Eraly,^{1,‡} Sofia Quaglioni,³ and Guillaume Hupin^{4,5}

¹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

²Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

³ Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

4 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France ⁵CEA, DAM, DIF, F-91297 Arpajon, France

Neutron-rich halo nucleus 11Be Spectrum ⁿ ^þ ¹⁰Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.

• **parity inversion** g.s. to be $J^{π=1/2}$ η e to be $\overline{\Pi}$ =1/2-

²⁺⁾⁺ⁿ • Halo structure – In reality, 11Be g.s. is **J^π=1/2+** - parity inversion

weakly bound J=1/2 states spectrum dominated by n-¹⁰Be state also bound \sim 180 keV \sim re way the way the material to the sense of the interactions are constrained to the interactions are constrained to μ de data can domina

Neutron-rich halo Nucleus 11Be

PRL 117, 242501 (2016) PHYSICAL REVIEW LETTERS week ending week ending

9 DECEMBER 2016

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ¹¹Be?

Neutron-rich halo Nucleus 11Be

PRL 117, 242501 (2016) PHYSICAL REVIEW LETTERS week ending week ending

9 DECEMBER 2016

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ¹¹Be?

Neutron-rich halo Nucleus 11Be

PRL 117, 242501 (2016) PHYSICAL REVIEW LETTERS week ending week ending

9 DECEMBER 2016

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11 Be?

RIUMF

NCSM with Continuum (NCSMC)

• representing $H|\Psi^{J\pi\tau}\rangle = E|\Psi^{J\pi\tau}\rangle$ using the over-complete basis H $|\Psi^{J\pi T}\rangle = E$ $|\Psi^{J\pi T}\rangle$ *Baroni, Navrátil, Quaglioni Phys. Rev. Lett. 110, 022505 (2013)*

$$
|\Psi^{J\pi T}\rangle = \sum_{\lambda} c_{\lambda} |\Psi_A E_{\lambda} J^{\pi} T\rangle + \sum_{\nu} \int dr r^2 \frac{\chi_{\nu}(r)}{r} |\xi_{\nu r}^{J\pi T}
$$

expansion in A-body NCSM eigenstates

relative motion of clusters NCSM/RGM expansion

 \setminus

• leads to NCSMC equation

 $\overline{}$

$$
\left(\begin{array}{cc}H_{NCSM} & h \\ h & \mathcal{H}\end{array}\right)\left(\begin{array}{c} c \\ \chi(r)/r\end{array}\right)=E\left(\begin{array}{cc} \mathbb{I} & g \\ g & \mathbb{I}\end{array}\right)\left(\begin{array}{c} c \\ \chi(r)/r\end{array}\right)
$$

\n- with 3N contributions in
$$
H_{NCSM}
$$
 h H_{NCSM} h H_{NCSM} $qiven by$ contains NCSM/RAM NCSM $(\Psi_A E_{\lambda' J}^{T} T | H | \xi_{vr}^{J \pi T})$ Hamiltonian kernel $qgen$ $Qatri$ $Angelo$ $Calci$
\n

• **Halo structure**

spectrum dominated by n^{-10} Be halo structure

NCSM input

- calculations use NCSM vectors and energies as input
- include n-10Be continuum $(0^+,2^+,2^+$ states of $^{10}Be)$
- include ¹¹Be short-range correlations:
	- 4 negative parity (at least) 3 positive parity states of 11Be

NCSM input

and energies as input

• calculations use NCSM vectors

• **Halo structure**

spectrum dominated by n^{-10} Be halo structure

11Be excitation spectrum 2 3 4 *E*thr. [MeV]

1
11
11

11Be excitation spectrum 2 3 4 *E*thr. [MeV]

1
11
11

March 27 2017 **2017** 20 November 20 November 20 Angelo Calci

11Be excitation spectrum 4 5 *E*thr. [MeV]

March 27 2017 **21** 21 21 22

5

6

Angelo Calci ! drastic difference for the 1/2+ state right at threshold

TRIUMF 11Be: Photodisintegration process & E1 transition

*Kwan et al. Phys. Lett. B 732, 210 (2014)

- **strongest known E1** transition between low-lying states (attributed to halo structure)
- reproduced **only** with **continuum effects**

- **conflicting** experimental **measurements**
- ab initio results:
	- **discriminate** between measurements
	- **predict dip** at 3/2- resonance energy

.

negative parity positive parity

Mirror nuclei:¹¹Be and ¹¹N *Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)*

March 27 2017 **Angelo Calci Angelo Calci** 23

p+10C Scattering: Structure of 11N resonances **p+10C scattering: structure of 11N resonances** 60 $\overline{\mathsf{J}}$,
C $\frac{1}{2}$ <u>1</u> nanc \overline{a} te $\overline{}$ $\overline{}$ 5/2+ 60 ring: Structure of TIN resonanc 21L $\overline{}$

30

\blacktriangleright ia chii 150 180 $\overline{\text{P}}$ ering allows discrim 5/2+ 90 among chiral nuclear forces $\overline{}$ elastic scattering allows discrimination Mirror System 120 **180** \mathbf{H} among chiral nuclear torce $\frac{1}{2}$ 90 elastic scattering allows discrimination 5/2+ and chiral nuclear ford Δ elastic scallering allows discrimination Discrimination among chiral nuclear forces

90

p+10C scattering: structure of 11N resonances

3/2+

3/2+

niaboration.
Igo, A. Sanetullaev *et al.* Nacceles A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth *et al* with IRIS collaboration, in preparation

3/2-

P5/2

30

 \mathbb{R}^n

A. Kumar, R. Kanungo, A. Sanetullaev *et al.* A. Kumar, R. Kanungo, A. Sanetullaev *et al.* A. Kumar, R. Kanungo, A. Sanetullaev *et al.*

90

Ekin [MeV]

Ekin [MeV]

S1/2

S1/2

p+10C Scattering: Structure of 11N resonances **p+10C scattering: structure of 11N resonances** 60 $\overline{\mathsf{J}}$,
C $\frac{1}{2}$ <u>1</u> nanc \overline{a} te $\overline{}$ $\overline{}$ 5/2+ 60 ring: Structure of TIN resonanc **RIUMF** $\overline{}$

30

\blacktriangleright ia chii 150 180 $\overline{\text{P}}$ ering allows discrim 90 among chiral nuclear forces \overline{a} elastic scattering allows discrimination Mirror System 120 **180** \mathbf{H} among chiral nuclear torce $\frac{1}{2}$ elastic scattering allows discrimination 5/2+ and chiral nuclear ford Δ elastic scallering allows discrimination Discrimination among chiral nuclear forces

90

5/2+

p+10C scattering: structure of 11N resonances

3/2+

3/2+

IRIS collaboration: IRIS collaboration: IRIS collaboration: A. Kumar, R. Kanungo, A. Sanetullaev *et al.* A. Kumar, R. Kanungo, A. Sanetullaev *et al.* A. Kumar, R. Kanungo, A. Sanetullaev *et al.* IRIS collaboration:

90

Ekin [MeV]

Ekin [MeV]

S1/2

S1/2

30

niaboration.
Igo, A. Sanetullaev *et al.* Nacceles A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth *et al* with IRIS collaboration, in preparation

3/2-

90

P5/2

30

 \mathbb{R}^n

p+10C Scattering: Structure of 11N resonances **p+10C scattering: structure of 11N resonances** 60 $\overline{\mathsf{J}}$,
C $\frac{1}{2}$ <u>1</u> nanc \overline{a} te $\overline{}$ $\overline{}$ 5/2+ 60 ring: Structure of TIN resonanc **RIUMF** $\overline{}$

30

\blacktriangleright ia chii 150 180 $\overline{\text{P}}$ ering allows discrim 90 among chiral nuclear forces \overline{a} elastic scattering allows discrimination Mirror System 120 **180** \mathbf{H} among chiral nuclear torce $\frac{1}{2}$ elastic scattering allows discrimination 5/2+ and chiral nuclear ford Δ elastic scallering allows discrimination

90

5/2+

p+10C scattering: structure of 11N resonances

3/2+

3/2+

90

Ekin [MeV]

Ekin [MeV]

S1/2

S1/2

30

3/2-

90

P5/2

30

 \mathbb{R}^n

NCSMC with approximated 3N forces

with P. Navrátil, R. Roth, E. Gebrerufael NCSM with Continuum (NCSMC)

• representing $H|\Psi^{J\pi T}\rangle = E|\Psi^{J\pi T}\rangle$ using the **over-complete basis** H $|\Psi^{J\pi T}\rangle = E$ $|\Psi^{J\pi T}\rangle$

RETRIUMF

red the mode of the set **@TRIUMF**
Normal-orde **order** ring (NO) approximation ˜ Normal-ordering (NO) approximation

contain information in the reference standard tool to reduce particle rank • standard tool to **reduce particle rank**

 \approx

• generally NO can be considered as basis transformation

 $\overline{}$ contain information of reference state and initial 3N force

- interested in direct description of **open-shell systems**
	- multi-reference normal ordering (MR-NO)

 $V_{3N} \approx \tilde{V}_{0N} + \tilde{V}_{1N} + \tilde{V}_{2N} + \tilde{V}_{3N}$

• generalization of wicks theorem [Kutzelnigg, Mukherjee]

NCSM/RGM kernels with MR-NO contributions

- reduces computational costs tremendously
- impressively accurate approximation

²*^N* + *V*

Derive NCSM/RGM Kernels Derive NCSM/RGM Kernels \mathcal{L} *MT*1*m^t M*0 1*m*⁰ *j M*0 *^T*1*m*⁰ *t* ✓ *^I*¹ *^j ^J M*¹ *m^j M* ◆ ✓ *T*¹ ² *T M^T*¹ *m^t M^T* ◆ ✓ *I*⁰ ¹ *j*⁰ *J M*⁰ ¹ *m*⁰ *^j M* ◆ ✓ *T*⁰ 1 ² *T P***1** *M* ◆ ⇡0 ¹*M*⁰ *l* 0 *j*0 *m*⁰ *m*⁰ ⇡1*M*1*T*1*M^T*¹ *>SD [|]nljm^j* 1 *^t|O| ^A*¹*E*1*I*¹ *m^t >* Derive NCSM/RGM Kerne **BALLARD BLOOM AFRANAI** *^A*¹*E*⁰ 1*I*⁰ 1 ⇡0 ¹*M*⁰ 1*T*⁰ 1*M*⁰ *^T*¹ *| < n*⁰ *l* 0 *j*0 *m*⁰ *j m*⁰ *^t|O| ^A*¹*E*1*I*¹ ⇡1*M*1*T*1*M^T*¹ *>SD [|]nljm^j* 1 2 *m^t >* <u>2</u> 2 2 2 2 2 2 2 2 2 2 2 0.2 0N exchange of the second sec

\bigcap \bigcap karn <u>0.2 0N external product</u> *SD <* ✏ ⌫0*n*⁰ *|V* ⁰*^N T ^A*1*,A|*✏ 0B kernel *A* 1

dom nant 0B kernel contribution inclu *M I*^{*M*} *M^T*¹ *m^t M^T* **led in tar** *M*⁰ ¹ *m*⁰ let e ens *M*⁰ *m*⁰ *^t M^T* dominant 0B kernel contribution included in target eigensta *^A*¹*E*⁰ 1*I*⁰ ⇡0 ¹*M*⁰ 1*T*⁰ 1*M*⁰ *^T*¹ *|a† aⁿ*0*l*0*j*0*m*⁰ *| ^A*¹*E*1*I*¹ ⇡1*M*1*T*1*M^T*¹ *>SD* $\overline{\mathsf{U}}$ 11 *inant M*1*m^j* $\sqrt{ }$ *MT*1*m^t* $\overline{1}$ *j T*1 *t* $\overline{}$ ✓ *^I*¹ *^j ^J M*¹ *m^j M* ◆ ✓ *T*¹ ² *T M I M I M T* \overline{a} *jo tora in targe* + **aigenets** *M*⁰ *T*¹ *m*⁰ *^t M^T* ⇥ *SD <* ⁰ \Rightarrow only MR-NO 1B and 2B kernels contribute **dominant** dominant 0B kernel contribution included in target eigenstates 0.3 1N direct

0.3 1N direct 0.3 1N direct *SD <* ✏ *J* ⇡*T* ⌫0*n*⁰ *|V ^A|*✏ *^J* ⇡*^T* ⌫*ⁿ >SD* 1B kernel

 $\delta_{SD} < \epsilon_{\nu' n'}^{\mathcal{J} \pi T} |{\boldsymbol{V}}_A | \epsilon_{\nu n}^{\mathcal{J} \pi T} >_{SD} \delta_{NL}^{\mathcal{J} \pi T}$

 \sum m_j *M* $\overline{}$ m_t *m*^{*t*} M $\overline{}$ $_1^\prime$ m^\prime_j Λ $\overline{}$ T_1 ^{*m* $'_t$} $\left\{\begin{array}{c|c}I_1 & j & J\end{array}\right\}$ M_1 *m_j* | \mathcal{M} $\left(\begin{array}{cc} T_1 & \frac{1}{2} \end{array} \right)$ M_{T_1} *m_t* | M_1 $\left(\begin{array}{cc} I'_1 & j'_1 \ I'_2 & j'_2 \end{array} \right)$ M'_1 m'_j | *J* ◆ ✓ *T*⁰ 1 $\frac{1}{2}$, $\left\langle M'_{T_1} \mid m'_t \mid \right.$ $\begin{array}{cc} \begin{array}{c} \mathcal{L} \end{array} & \sum \end{array} \begin{array}{c} \sum \end{array} \begin{array}{c} \begin{array}{c} \mathcal{L} \\ \mathcal{M} \end{array} \begin{array}{c} \begin{array}{c} \mathcal{L} \\ \mathcal{M} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \mathcal{L} \\ \mathcal{M} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \mathcal{L} \\ \mathcal{M} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \mathcal{L} \\ \mathcal{M} \end{$ M_1m_j \sum M_{T_1} m_t \sum $M_1'm_j'$ \sum $M'_{T_1}m'_t$ $\left(\begin{array}{ccc} I_1 & j \end{array} \right| \mathcal{J}$ M_1 *m_j* | \mathcal{M} $\left(\begin{array}{cc} T_1 & \frac{1}{2} \end{array} \right)$ *T* M_{T_1} *m*_t | M_T $\left(\begin{array}{cc} I'_1 & j'_2 \end{array} \right)$ M_1' *m'_j* | \mathcal{M} \bigwedge T_1' $\frac{1}{2}$ | T M'_{T_1} $m'_t \mid M_T$ $\sum_{i=1}^{n} (I_i - j \mid \mathcal{J}) (T_1 - \frac{1}{2} \mid T) (I'_1 - j' \mid \mathcal{J}) (T'_1 - \frac{1}{2} \mid T)$ ⇥ *SD <* ⁰ *^A*¹*E*⁰ 1*I*⁰ 1 $\sum_{i=1}^{\infty} \left(\begin{array}{cc} 1 & j \\ M_1 & m_i \end{array} \right) \left(\begin{array}{cc} J & 1 & \frac{1}{2} \\ M_T & m_i \end{array} \right)$ 1 1

^J ⇡*^T* ⌫*ⁿ >SD*⁼ *^V* ⁰*^N · NormKernel*

- $SD \leq \psi'_{A-1} E'_1 I'^{\pi_1}_1$ \times *sp* $\lt \psi'_{A-1} E'_1 I'_1^{\pi'_1} M'_1 T'_1 M'_{T_1} |\psi_{A-1} E_1 I_1^{\pi_1} M_1 T_1 M_{T_1} >_{SL}$ $\int_0^{\pi_1} M_1' T_1' M_{T_1}' \left| \psi_{A-1} E_1 I_1^{\pi_1} M_1 T_1 M_{T_1} \right| >_{SD}$ $\frac{1}{50}$ $\frac{1}{2}$ $\int_1^{\prime} \pi_1^{\prime} M_1^{\prime} T_1^{\prime} M_m^{\prime}$
- $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ \overline{a} m_j ^{*t*}_{*f*}^{*m*} $\frac{1}{6}$ $\overline{ }$ \times $\langle n'l'j'm'_{j}\frac{1}{2}m'_{t}|V_{A}|nljm_{j}\frac{1}{2}m_{t}\rangle$ 1 2 m_t^{\prime} ^{*|*}*V_A|* $nljm_j$ 1 2 \times $\langle n'l'j'm'_{i} \frac{1}{2} m'_{t} | V_{A} | n l j m_{j} \frac{1}{2} m_{t} \rangle$

 $-$ s $_D<\epsilon^{\mathcal{J}\pi T}_{\nu'n'}|{\boldsymbol{V}}_A{\boldsymbol{T}}_{A-1,A}|\epsilon^{\mathcal{J}\pi T}_{\nu'n} >_{SD}$ $\frac{1}{4-1}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sqrt{ }$ \ddot{x} $\ddot{}$ $\frac{1}{\sqrt{2}}$ T_1 $A-1 \sum_{M_1 m_j} \sum_{M_{T_1} m_t} \sum_{M'_1 m'_j} \sum_{M'_{T_1} m'_t} \left(M_1 \ m_j \mid \mathcal{M} \ \right) \left(M_{T_1} \ m_t \mid M_T \ \right) \left(M'_1 \ m'_j \mid \mathcal{M} \ \right) \left(M'_{T_1} \ m'_t \mid \mathcal{M} \right)$ J' $\vert a^{\dagger} \vert$ **q** $\vert \psi \rangle$ *F₁, T₁, T₁, N₁, <i>T*₁ $M_{\tau} > \epsilon$ $= -\frac{1}{4}$ $A-1$ \sum M_1m_j \sum M_{T_1} m_t \sum $M_1'm_j'$ \sum $M'_{T_1}m'_t$ $\left(\begin{array}{ccc} I_1 & j \end{array} \right| \mathcal{J}$ M_1 *m_j* | \mathcal{M} $\left(\begin{array}{cc} T_1 & \frac{1}{2} \end{array} \right)$ *T* M_{T_1} *m_t* | M_T $\left(\begin{array}{cc} I'_1 & j'_1 \end{array} \right)$ M'_1 *m'_j* | \mathcal{M} \bigwedge T_1' $\frac{1}{2}$ T M'_{T_1} $m'_t \mid M_T$ ◆

- \sum_{i} SD $\sim \psi_f$ -1^{L_1} 1 ^{*M*} $M_{T_1}'T_1'M_{T_1}'|\bm{a}_{nljm_jm_t}^\dagger\bm{a}_{\alpha_A}$ \times \sum_{SD} $\langle \psi'_{A-1} E'_1 I'_1 \pi'_1 M'_1 T'_1 M'_{T_1} | \bm{a}_{nljm,m_t}^{\dagger} \bm{a}_{\alpha_{A-1}} | \psi_{A-1} E_1 I_1 \pi_1 M_1 T_1 M_{T_1} \rangle_{SD}$ $\frac{a_{A-1}}{a_{A-1}}$ $\frac{2}{\alpha}$ $\frac{5}{\alpha}$ $\overline{}$ \mathbf{r} / π' \overline{U} $\bm{a}_{nljm_jm_t}\bm{a}_{\alpha_A}$ -1 *L*₁*I*₁^{*m*}₁^{*I*} $\times \sum_{i} S_{i} D \langle \psi'_{A-1} E'_{1} I'_{1} \pi'_{1} M'_{1} T'_{1} M'_{T_{1}} | \mathbf{a}_{nljm_jm_t}^{\dagger} \mathbf{a}_{\alpha_{A-1}} | \psi_{A-1} E_{1} I_{1} \pi_{1} M_{1} T_{1} M_{T_{1}} \rangle_{SD}$ α_{A-1} $SD \leq \psi'_{A-1} E'_1 I'_1$ $\frac{\pi_1^{\prime} M_1^{\prime} T_1^{\prime} M_{T_1}^{\prime}}{|a_{n l j m_j m_t}^{\dagger} a_{\alpha_{A-1}}|} \psi_{A-1} E_1 {I_1}^{\pi_1} {M_1} T_1 {M_{T_1}} >_{SD}$
- $\leq n/\ell$ $\chi \quad < n'l'j'm'_j\frac{1}{2}m'_t|\bm{V}_A|\alpha_{A-1}>$ $\overline{}$ \times $\langle n'l'j'm'_j\frac{1}{2}m'_t|\boldsymbol{V}_A|\alpha_{A-1}\rangle$ 1 2 $m_t'|\boldsymbol{V}_A|\alpha_{A-1} >$

JUNE KAMALER DI SERVICE SERVIC $\overline{2}$ No $\overline{1}$ $\overline{}$ $\overline{\$ ⇥ *< n*⁰ *l* 0 *j*0 *m*⁰ *j* 2 *m*⁰ *^t|V ^A|*↵*^A*¹ *>* 0.5 NN direct 2B kernel

⁼ ¹

SD < ✏

…

NCSMC: Impact of 3N in Kernels $\overline{}$ 3 $\overline{\mathsf{N}}$

NCSMC: Impact of 3N in Kernels 2 3 $\overline{\mathbf{C}}$

First application: 12N

• **ideal candidate**

weakly bound J=1+ state dominated by p-11C

- some low lying resonances not measured precisely
- $11C(p,y)$ ¹²N can bypass triple-alpha process
- planed experiment at TUDA facility at TRIUMF

ab initio NCSMC

- include p-¹¹C continuum (3/2- ,1/2- ,5/2- ,3/2- states of 11C)
- include 4 negative and 6 positive parity states of 12N
- MR-NO with respect to $N_{max}=0$ eigenstate of 12N

@TRIUMF

12N spectrum with continuum effects 9Be: NO. NCC WEST VEHICLE WITH SPECIFIC UP 2 $\bm{\nabla}$ *E*thr. [MeV]

RETRIUMF

12N spectrum with continuum effects 9Be: NO. NCC WEST VEHICLE WITH SPECIFIC UP 2 $\bm{\nabla}$ *E*thr. [MeV]

Probe chiral interaction in light nuclear scattering

n-4He: Standard interaction

n-⁴He with N²LO_{SAT}

- 9 P3/2 P1/2 splitting sensitive to details of nuclear force
- under- or overestimated by NN+3N(400) or N²LO_{SAT} interaction

Correlation Analysis: 12C**(**1**+)** vs. 10B**(**1**+)** n-4He with LENPIC interaction

• splitting underestimated without 3N interaction $\mathsf{\Pi}$ n

 $\hbar\Omega = 24 \,\mathrm{MeV}$ $\alpha = 0.08 \, \mathrm{fm}^4$ $E_{3max} = 14$ \overline{D} c_D \overline{O} c_D \overline{O} (\overline{O} cD₀) $\mu L = 24 \text{N}$

n-⁴He with LENPIC interaction

March 27 2017 **Angelo Calci** 37 **Angelo Calci** 37

n-⁴He with N⁴LO(500) interaction n-4He with N4LO(500) interaction

• promising splitting properties of N4LO(500) NN interaction sir
. a properties of N⁴LO(500) NN interaction

Outlook

- **insufficient knowledge of nuclear force** provides largest uncertainties in ab initio calculations
- **p-shell spectra** provide powerful testbed for chiral potential
- **combination of NCSMC with MR-NO** allows to include continuum effects at strongly reduced cost
	- enables heavier targets and **complex projectiles**
	- **probe future interactions** in weakly-bound system
	- splitting of $P_{3/2}$ $P_{1/2}$ phase shifts in n-4He can be used to **constrain 3N** interaction

RIUMF

Epilogue Thank you! Merci!

LENPIC

■ **thanks to my collaborators •** thanks to my collaborators

- P. Navratil, R. Stroberg, J. Holt, **• P. Navrátil**, J. Holt TRIUMF Vancouver, Canada **• P. Navrátil**, J. Holt **• S. Binder**, **J. Langhammer**, **• P. Navrátil, R. Stroberg, J. Holt,

B.** K. R. Kanungo, G. Hackman, bavoi, Canada A. Kumar, A. Lennarz TRIUMF Vancouver, Canada
- **•** D. Doth E. Cok $\overline{}$ **FU Darmstadt, Germany F. Gebrerutael,** \mathcal{I} • R. Roth, E. Gebrerufael, K. Hebeler, A. Schwenk
- J. Vary, P. Maris **•** H. Hergert **•** H. Hergert LLNL Livermore, USA \ldots \ldots , \ldots Iowa State University, USA
- Michigan State University, USA **Istituto Nazionale di Fisica Nucleare, Pisa, Italy** • J. Dohet-Eraly
Patitute Nationals di Fisice N

U. TIUTTETU-TICUUI
LLNL Livermore, USA C. Romero-Redondo

NRC-CNR

- \mathbb{R} Low-Energy \mathbb{R} **Nuclear Property Property** vici. Hupin Université Paris-Sud, France • G. Hupin
	- International **Collaboration**
Collaboration • H. Hergert, S. Bogner MSU, USA

www.triumf.ca 4004 Wesbrook Mall | Vancouver BC | Canada V6T 2A3 | Tel 604.222.1047 | Fax 604.222.1074 | 39