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Chiral NN+3N Interactions
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• standard interaction: 
• NN @ N3LO: Entem & Machleidt, 500MeV cutoff

• 3N @ N2LO: Navrátil, local, 500MeV cutoffs &  
modifications of the 3N force

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

• EGM N2LO interaction: 
• NN: Epelbaum et al., 450, . . . , 600 MeV cutoff

• 3N: Epelbaum et al., 450, . . . , 600 MeV cutoff,  
nonlocal 

• optimized N2LO interaction: 
• NN: Ekström et al., 500MeV cutoff, LECs fitted with 

POUNDerS

• 3N: Navrátil, local, 500MeV cutoff, fit to 4He & Triton
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,
and stars denote vertices of index � = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is ⌫ = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (⇠ Q0). They are
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3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is ⌫ = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (⇠ Q0). They are

chiral interactions are not unique:
• chiral order 
• regularization
• fit of low-energy constants (LECs)
• (power counting)
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Next Generation Interactions
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• standard interaction: 
• NN @ N3LO: Entem & Machleidt, 500MeV cutoff

• 3N @ N2LO: Navrátil, local cutoffs

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

• N2LOSAT interaction: 
• NN+3N: Ekström et al., nonlocal 450MeV cutoff, 

simultaneous fit to NN data and  
selected many-body observables 
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• LENPIC interaction: 
• NN up to N4LO: Epelbaum et al., semi-local cutoff

• 3N up to N3LO: under construction  

• N4LO(500): 
• NN @ N4LO: Machleidt et al., 500MeV cutoff
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3B-Jacobi HO matrix elements

d

d�
eH� =
⇥
��, eH�
⇤

with �� = (2�)2
⇥
Tint, eH�
⇤
= ��†�

keep SRG induced 
contributions up to 3B level
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unperturbed excitation energy  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No-Core Schalenmodell (NCSM)

■ solving the eigenvalue problem

H|Ψn〉 = En|Ψn〉

■ many-body basis: Slater determinants |ν〉
composed of harmonic oscillator single-particle
states (m-scheme)

!!Ψn
"
=
∑

ν

Cn
ν

!!ν
"

■ model space: spanned by m-scheme states
|ν〉 with unperturbed excitation energy of up
to NmℏΩ

e = 0

e = 1

e = 2

e = 3

.

protons
neutrons

4
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No-Core Schalenmodell (NCSM)

■ solving the eigenvalue problem

H|Ψn〉 = En|Ψn〉

■ many-body basis: Slater determinants |ν〉
composed of harmonic oscillator single-particle
states (m-scheme)
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problem of NCSM 
enormous increase of model space with 

particle number A
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• extrapolation of κmin→0 recovers effect of omitted 
contributions 

• IT-NCSM provides same results as full NCSM
• expands application range to larger A
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Sensitivity on Chiral 3N Interactions

■ analyze the sensitivity of spectra on low-energy constants
(c, cD, cE) and cutoff (Λ) of the chiral 3N interaction at N2LO

■ why this is interesting:

• impact of N3LO contributions: some N3LO diagrams can be
absorbed into the N2LO structure by shifting the c constants

c̄1 = c1 −
g2
A
Mπ

64πF2
π

, c̄3 = c3 +
g4
A
Mπ

16πF2
π

, c̄4 = c4 −
g4
A
Mπ

16πF2
π

• uncertainty propagation: sizable variations of the c from dif-
ferent extractions (also affects NN)

c1 = −1.23...− 0.76 , c3 = −5.94...− 3.20 , c4 = 3.40...5.40 [GeV−1]

• cutoff dependence: does the cutoff choice in the 3N interacti-
on affect nuclear structure observables?

(Bernard et al.,

Ishikawa, Robilotta)

26

16O: Origin of Induced 4N

switch off individual contributions of the 3N interaction

2 4 6 8 1012141618
Nmx

-160

-150

-140

-130

-120

-110

.

E
[M

e
V
]

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

● ! "

α = 0.04 fm4 α = 0.08 fm4 α = 0.16 fm4

Λ = 2.24 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1
NN+3Nfull

ℏΩ = 20MeV

12-a

16O: Origin of Induced 4N

switch off individual contributions of the 3N interaction

2 4 6 8 1012141618
Nmx

-160

-150

-140

-130

-120

-110

.

E
[M

e
V
]

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

● ! "

α = 0.04 fm4 α = 0.08 fm4 α = 0.16 fm4

Λ = 2.24 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1
NN+3Nfull

ℏΩ = 20MeV

12-a

16O: Origin of Induced 4N

switch off individual contributions of the 3N interaction

2 4 6 8 1012141618
Nmx

-160

-150

-140

-130

-120

-110

.

E
[M

e
V
]

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

2 4 6 8 1012141618
Nmx

● ! "

α = 0.04 fm4 α = 0.08 fm4 α = 0.16 fm4

Λ = 2.24 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1
NN+3Nfull

ℏΩ = 20MeV

12-a



Angelo Calci

Sensitivity on chiral 3N interactions

9March 27 2017

Sensitivity on Chiral 3N Interactions

■ analyze the sensitivity of spectra on low-energy constants
(c, cD, cE) and cutoff (Λ) of the chiral 3N interaction at N2LO

■ why this is interesting:

• impact of N3LO contributions: some N3LO diagrams can be
absorbed into the N2LO structure by shifting the c constants

c̄1 = c1 −
g2
A
Mπ

64πF2
π

, c̄3 = c3 +
g4
A
Mπ

16πF2
π

, c̄4 = c4 −
g4
A
Mπ

16πF2
π

• uncertainty propagation: sizable variations of the c from dif-
ferent extractions (also affects NN)

c1 = −1.23...− 0.76 , c3 = −5.94...− 3.20 , c4 = 3.40...5.40 [GeV−1]

• cutoff dependence: does the cutoff choice in the 3N interacti-
on affect nuclear structure observables?

(Bernard et al.,

Ishikawa, Robilotta)

26

provide 
constraints for chiral 

Hamiltonians and 
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12C : Sensitivity on ci
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■ many states
are rather c-
insensitive
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• many states  
are rather ci 
independent 

• first 1+ state 
shows strong   
c3 dependence

IT-NCSM
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12C : Sensitivity on cD & Cutoff
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• moderate 
dependence 
on cD,  
stronger 
dependence 
on Λ

• again first 1+ 
state is most 
sensitive

12C: Sensitivity to cD and cutoff

IT-NCSM
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Correlation Analysis: 12C(1+) vs. 10B(1+)
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standard

• correlation does not 
agree with 
experiment

• hints at problems 
with E&M NN 
interaction
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predictions
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6Li: Alternative Interactions
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• small cutoff dependence for NN+3N
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6Li: Alternative Interactions
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• complex system with compressed spectrum
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• accurate predictions within large uncertainties
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Correlation Analysis: 12C(1+) vs. 10B(1+)
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■ need further investigations
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• no obvious 
correlation for NN 
modifications 

standard EGM
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Introduction

many-body eigenvalue problem

H
!!Ψn
"
= En
!!Ψn
"

2

resonances & 
scattering states

Resonating Group 
Method (RGM)  

describing relative 
motion of clusters

Angelo Calci 16

Outline  

ab initio description of nuclei

bound states & 
spectroscopy

(Importance Truncated) 
NCSM

ab initio description of
nuclear clusters

NCSM with Continuum
continuum effects  
in spectroscopy

March 27 2017

QCD-based interaction
realistic NN+3N interactions

Joachim Langhammer - Doctoral Thesis Presentation - 23. April 2014

(IT-)NCSM
Ab-initio description of

nuclear clusters
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3.87
10Be(2+)+n

• parity inversion 
shell model predicts  
g.s. to be J∏=1/2-

• Halo structure  
weakly bound J=1/2 states  
spectrum dominated by n-10Be

Angelo Calci 17March 27 2017

Neutron-rich halo Nucleus 11Be

•  Z=4, N=7 
–  In the shell model picture g.s. expected to be Jπ=1/2-  

•  Z=6, N=7 13C and Z=8, N=7 15O have Jπ=1/2- g.s. 
–  In reality, 11Be g.s. is Jπ=1/2+ - parity inversion 
–  Very weakly bound: Eth=-0.5 MeV 

•  Halo state – dominated by 10Be-n in the S-wave 
–  The 1/2- state also bound – only by 180 keV 
 

•  Can we describe 11Be  
     in ab initio calculations? 

–  Continuum must be included 
–  Does the 3N interaction play  
    a role in the parity inversion?  

    
 

Neutron-rich halo nucleus 11Be 

28 

0s1/2 

0p3/2 

0p1/2 

1s1/2 N=7Z=4

Spectrum

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?

Angelo Calci,1,* Petr Navrátil,1,† Robert Roth,2 Jérémy Dohet-Eraly,1,‡ Sofia Quaglioni,3 and Guillaume Hupin4,5
1TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

2Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
3Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
4Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France

5CEA, DAM, DIF, F-91297 Arpajon, France
(Received 11 August 2016; revised manuscript received 7 October 2016; published 9 December 2016)

The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.
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The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]

jΨJπT
A i ¼

X

λ

cJ
πT

λ jAλJπTiþ
X

ν

Z
drr2

γJ
πT

ν ðrÞ
r

AνjΦJπT
νr i:

ð1Þ

PRL 117, 242501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

0031-9007=16=117(24)=242501(6) 242501-1 © 2016 American Physical Society



3.87
10Be(2+)+n

• parity inversion 
shell model predicts  
g.s. to be J∏=1/2-

• Halo structure  
weakly bound J=1/2 states  
spectrum dominated by n-10Be

Angelo Calci 17March 27 2017

Neutron-rich halo Nucleus 11Be

•  Z=4, N=7 
–  In the shell model picture g.s. expected to be Jπ=1/2-  

•  Z=6, N=7 13C and Z=8, N=7 15O have Jπ=1/2- g.s. 
–  In reality, 11Be g.s. is Jπ=1/2+ - parity inversion 
–  Very weakly bound: Eth=-0.5 MeV 

•  Halo state – dominated by 10Be-n in the S-wave 
–  The 1/2- state also bound – only by 180 keV 
 

•  Can we describe 11Be  
     in ab initio calculations? 

–  Continuum must be included 
–  Does the 3N interaction play  
    a role in the parity inversion?  

    
 

Neutron-rich halo nucleus 11Be 

28 

0s1/2 

0p3/2 

0p1/2 

1s1/2 N=7Z=4

Spectrum

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?

Angelo Calci,1,* Petr Navrátil,1,† Robert Roth,2 Jérémy Dohet-Eraly,1,‡ Sofia Quaglioni,3 and Guillaume Hupin4,5
1TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

2Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
3Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
4Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France

5CEA, DAM, DIF, F-91297 Arpajon, France
(Received 11 August 2016; revised manuscript received 7 October 2016; published 9 December 2016)

The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.

DOI: 10.1103/PhysRevLett.117.242501

The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
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examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
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states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
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[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
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metries of QCD and uses pions and nucleons as relevant
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calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
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An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
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The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]
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The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
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bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
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lying states, attributed to the halo character of 11Be.
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degrees of freedom. Within this theory, NN, 3N, and
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specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
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11Be spectrum and reproduce the experimental ground
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range [19,20] correlations, both of which are crucial to
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which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
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! drastic difference for the 1/2+ state right at threshold
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exp.

n+10Be(0+)

Robert Roth - TU Darmstadt - February 2015

9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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11Be: Photodisintegration process  & E1 transition

• conflicting experimental measurements

• ab initio results: 
- discriminate between measurements 
- predict dip at 3/2- resonance energy  

NCSM NCSMC NCSMC- 
pheno exp.

NN+3N(400) 0.0005 - 0.146
0.102(2)*

N2LOSAT 0.0005 0.127 0.117

*Kwan et al. Phys. Lett. B 732, 210 (2014)

B(E1:1/2-→1/2+)  [e2fm2]

• strongest known E1 transition  
between low-lying states 
(attributed to halo structure) 

• reproduced only with  
continuum effects  
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Mirror nuclei:11Be and 11N
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! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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Mirror System
elastic scattering allows discrimination 

among chiral nuclear forces
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scattering and transition 
observables enable interesting 

investigations
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also computational expensive
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approximated 3N forces 
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• representing                             using the over-complete basis

expansion in A-body 
NCSM eigenstates

Angelo Calci

NCSM with Continuum (NCSMC) 
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bottleneck :  
inclusion of 3N force
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• standard tool to reduce particle rank  

• generally NO is a basis transformation
V3N = Ṽ0N + Ṽ1N + Ṽ2N + Ṽ3N

May 21 2015 Angelo Calci 31

Normal-Ordering (NO) Approximation 

⇡
contain information of reference state and initial 3N force}• standard tool to reduce particle rank

• generally NO can be considered as basis transformation

contain information of reference state and initial 3N force

V3N = Ṽ0N + Ṽ1N + Ṽ2N + Ṽ3N

Angelo Calci 27

Normal-ordering (NO) approximation 

⇡

NCSM/RGM kernels with MR-NO contributions 

• reduces computational costs tremendously  
• impressively accurate approximation 

• interested in direct description of open-shell systems 
• multi-reference normal ordering (MR-NO)
• generalization of wicks theorem [Kutzelnigg, Mukherjee]

March 27 2017
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NCSMC: Impact of 3N in Kernels
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9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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NCSMC: Impact of 3N in Kernels
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! drastic difference for the 1/2+ state right at threshold
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• ideal candidate  
weakly bound J=1+ state 
dominated by p-11C
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First application: 12N

ab initio NCSMC

• include p-11C continuum  
(3/2-,1/2-,5/2-,3/2- states of 11C)

• include 4 negative and 6 
positive parity states of 12N

• MR-NO with respect to Nmax=0 
eigenstate of 12N

12N

• some low lying resonances not measured 
precisely

• 11C(p,ɣ)12N can bypass triple-alpha process

• planed experiment at TUDA facility at TRIUMF
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    Work in progress

• study incorporated 
truncations

• benchmark further 
chiral interactions

We need to 
improve our 

nuclear forces!
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Probe chiral interaction in light 
nuclear scattering  

March 27 2017
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• under- or overestimated by NN+3N(400) or N2LOSAT interaction 

n-4He with N2LOSAT

NCSMC with MR-NO  
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LENPIC 
interaction

NN

~⌦ = 24MeV

↵ = 0.08 fm4

E3max

= 14

R = 1.0 fm
N2LO

• splitting underestimated without 3N interaction  

Correlation Analysis: 12C(1+) vs. 10B(1+)
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• larger cD values provide 
better reproduction

• splitting sensitive to cD

LENPIC 
interaction

NN
NN+3N

~⌦ = 24MeV

↵ = 0.08 fm4
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Correlation Analysis: 12C(1+) vs. 10B(1+)
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N4LO(500) 
interaction

NN

• promising splitting properties of N4LO(500) NN interaction  

Correlation Analysis: 12C(1+) vs. 10B(1+)
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Outlook

39March 27 2017

• insufficient knowledge of nuclear force provides largest 
uncertainties in ab initio calculations 

• p-shell spectra provide powerful testbed for chiral potential 

• combination of NCSMC with MR-NO allows to include 
continuum effects at strongly reduced cost
• enables heavier targets and complex projectiles
• probe future interactions in weakly-bound system
• splitting of P3/2 - P1/2 phase shifts in n-4He can be used to 

constrain 3N interaction
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