Experiment and Phenomenology for Reactions with 3 Bodies in the Final State

Ohio University

13 March 2017

INT Program INT 17-1A: Nuclear Reactions, Workshop Week 3: A Symbiosis between Experiment, Theory and Applications

Overview of Presentation

- \blacktriangleright T(t, 2n) α Inertial Confinement Fusion Experiments
- \blacktriangleright T(t, 2n) α Neutron Energy Spectrum
- \blacktriangleright T(t, 2n) α Thermonuclear Reaction Rate
- \blacktriangleright T(t, 2n) α Neutron Spectrum Temperature Dependence
- \blacktriangleright T(³He, *np*) α and ³He(³He, 2*p*) α Experiments
- \triangleright Conclusions and Outlook

Motivation and Background

- \triangleright Study reaction mechanism: ⁵He and di-neutron correlations
- \triangleright R-Matrix description of 3-particle final states
- \triangleright Study mirror symmetry
- ^I Demonstrate measurements of charged-particle reaction rate in plasma
- ^I The cross section and neutron spectrum are important for inertial confinement fusion
- \blacktriangleright ³He(³He, 2*p*) α is an important fusion reaction in our sun

${}^{3}\text{He}({}^{3}\text{He}, 2p)\alpha$

Potential Questions:

- \blacktriangleright Electron Screening Effects?
- \blacktriangleright Resonances?

$A = 6$ Isobar Diagram

National Ignition Facility

images courtesy LLNL

Similar capabilities exist at the Laboratory for Laser Energetics (LLE) at Rochester (Omega Laser), but $\approx 50 \times$ less powerful

Unique Features of ICF Environment for Nuclear Physics

as compared to accelerator-based approaches

- \triangleright Reactions occur in thermonuclear plasma
- \blacktriangleright Low mass near target
- ► Sharp time structure (sub-nanosecond)
- \triangleright Possibility of high neutron fluxes
- \triangleright Willingness to work with tritium

Measurement of the $T(t, 2n)\alpha$ at the National Ignition Facility

- \triangleright Nearly pure tritium gas $(0.1\%$ D), low areal density "symcap" (gas-filled plastic capsule)
- $\triangleright \approx 200$ ps thermonuclear burn time
- $\triangleright kT = 3.3(3) \text{ keV} \rightarrow E_{\text{Gamma}}(T + T) = 16 \text{ keV}$
- \triangleright 2 organic liquid scintillators (xylene) \odot 20 and 22 meters, respectively
- \blacktriangleright Modeling includes:
	- \triangleright Instrument Response Function (time response)
	- \triangleright Scintillator response (efficiency)
	- \triangleright Attenuation and scattering
	- \blacktriangleright Thermal broadening
	- \blacktriangleright Background from $T(d, n)$ (small)

Raw Data from Equator Detector @ 20.1 m

Fits to Time Spectra

$T(t, 2n)\alpha$ Neutron Spectrum $E_{c.m.} = 16 \text{ keV}$

Sayre, Caggiano et al., Rev. Lett. 111, 052501 (2013). Di-neutron not included.

Determination of Thermonuclear Reaction Rate

 \blacktriangleright Definition:

$$
\langle \sigma v \rangle = \sqrt{\tfrac{8}{\pi \mu (kT)^3}} \int_0^\infty E \sigma(E) \exp[-E/(kT)] \, dE
$$

- \blacktriangleright Principle of measurement:
	- \triangleright Measure ratio to T(d, n) reaction rate (known to ≈ 1%)
	- \blacktriangleright H.-S. Bosch and G.M. Hale, Nucl. Fusion 32 611 (1992)
	- Assume constant S factor for $T(t, 2n)\alpha$
- \triangleright Mass spectrometry of capsule fill gas (example capsule):
	- \blacktriangleright tritium: 99.598(4) %
	- \blacktriangleright deuterium: 0.082(1) %
	- remainder: protium and 3 He
- ▶ Yield-weighted ion temperature determination:
	- ightharpoonright values width of "14 MeV" neutron peak from $T(d, n)$
	- **Figure 1** Brysk Formula: $\sigma[E_n] \approx \sqrt{\frac{2M_n\langle E_n \rangle}{M_\alpha + M_n}}$ $\frac{2M_n \langle E_n \rangle}{M_\alpha + M_n}(kT)$
	- \blacktriangleright H. Brysk, Plasma Physics 15, 611 (1973)
	- \triangleright Actual analysis uses a more sophisticated approach, including, e.g., relativistic kinematics

Reaction Rate Ratio is Insensitive to Temperature

 $T(d,n)$ and $T(t,2n)$ Reactivity Integrands for $kT = 3.3$ keV

Systematic Errors Considered:

- \blacktriangleright Fuel mixture uncertainty
- \blacktriangleright Spectrum fitting
- \triangleright Ion temperature determination (small)
- \blacktriangleright Total systematic error is estimated to be 30%

Analysis and Results (Simple Model)

\blacktriangleright Numbers of neutrons:

- \blacktriangleright $N_{DT} \propto n_{D}n_{T} \langle \sigma v \rangle_{DT}$ $\blacktriangleright N_{TT} \propto \frac{n_T^2}{2} \langle \sigma v \rangle_{TT} \times 2$ $\langle \sigma v \rangle_{TT}$
	- \blacktriangleright $\frac{N_{TT}}{N_{DT}} = \frac{n_T}{n_D}$ $\langle \sigma v \rangle_{DT}$
- \triangleright watch factors of two!
- \triangleright Spectral fitting (example analysis):
	- $N_{DT} = 3.9 \times 10^{12}$
	- $N_{TT}/N_{DT} = 4.5(4)$
	- \triangleright $kT = 3.3(3) \text{ keV}$ (burn-weighted)
- \blacktriangleright S(16 keV) ≈ 200 keV-b

More Sophisticated Analysis

considering time and spatial dependence of density, temperature, . . .

$T(^{3}He, np)\alpha$, $T(^{3}He, d)\alpha$, and $^{3}He(^{3}He, 2p)\alpha$

- Campaign of measurements are underway by Maria Gatu-Johnson, Alex Zylstra, Johan Frenje et al. (MIT/LLNL/Rochester/...)
- ► Requires proton detection via "Wedge Range Filters"
- \blacktriangleright Allows tests of isospin and mirror symmetry.
- \triangleright ³He(³He, 2*p*) α measured at NIF last month (looking for temperature dependence of proton energy spectrum)
- ^I Accurate temperature measurement is not possible at this time.

$T(^{3}He, np)\alpha$ Proton Spectrum

How should one try to analyze or understand reactions with three particles in the final state?

- \triangleright Ab-initio theory is not there yet.
- My interested: Phenomenology.
- \blacktriangleright Ideally: Unitary, includes known 2-body channel information, angular momentum conservation,...
- \blacktriangleright R-matrix?

Two-Body Channels are Generally Well Known

 $n - \alpha$ R-matrix parameters: Stammbach and Walter (1972).

Single (total) Energy Analysis is "Solved"

Carl Brune, Dan Sayre, Jac Caggiano, Andy Bacher, Gerry Hale, Mark Paris, Phys. Rev. C 92, 014003 (2015).

- \triangleright Three-body final state treated in Faddeev-inspired approach
- \triangleright Kinematics (recoil) is more complicated
- \triangleright Angular correlation effects on spectrum
- \triangleright Identical particles / antisymmetrization
- \triangleright F.C. Barker formalism + angular momentum coupling + antisymmetrization
	- D.P. Balamuth, R.W. Zurm¨uhle, and S.L. Tabor, Phys. Rev. C 10, 975 (1974).
	- $-$ D.F. Geesaman *et al.*, Phys. Rev. C 15, 1835 (1977).
	- $-$ H.O.U. Fynbo et al., Phys. Rev. Lett **91**, 082502 (2003).

Some Formulas

 \triangleright Our form for the matrix element:

$$
\mathcal{M}_{\nu_1 \nu_2} = \sum_c u_c(12) f_{\nu_1 \nu_2}^{lJ}(\Omega_1, \Omega_{23}) - u_c(21) f_{\nu_2 \nu_1}^{lJ}(\Omega_2, \Omega_{13})
$$

 $\blacktriangleright u_c$ is given by an R-matrix expression:

$$
u_c(12) = \left[\frac{P_1 P_{23}}{p_1 p_{23}}\right]^{1/2} e^{i(\omega_1 - \Phi_1)} e^{i(\omega_{23} - \Phi_{23})} \frac{\sum_{\lambda} \frac{A_{c\lambda} \gamma_{c\lambda}}{E_{c\lambda} - E_{23}}}{1 - [S_{23} - B_c + iP_{23}]R_c}
$$

 \blacktriangleright $f_{\nu_1\nu_2}^{lJ}$ contains the spin and angular information:

$$
f_{\nu_1\nu_2}^{lJ}(\Omega_1, \Omega_{23}) = \sum_{m, m_l, m'_l} \frac{(-1)^{J+m}}{\sqrt{2J+1}} \langle l m_l \frac{1}{2} \nu_1 | J m \rangle \langle l m'_l \frac{1}{2} \nu_2 | J-m \rangle Y_{l m_l}(\hat{\mathbf{p}}_1) Y_{l m'_l}(\hat{\mathbf{p}}_{23})
$$

 \blacktriangleright The particle distribution is given by

$$
\frac{d^3N}{dE_i \,\Omega_i \,d\Omega_j} = \sum_{\nu_1,\,\nu_2} |\mathcal{M}_{\nu_1\nu_2}|^2 \, p_i p_{jk} \mathcal{J}_{ijk}
$$

A 0⁺ (l = 0) initial t + t state is assumed, and $c = 1/2^+$, $1/2^-$, $3/2 - n + \alpha$ or an $l = 0$ spin-singlet di-neutron state.

Outlook

- \blacktriangleright Measurements of particle spectra and cross sections for the $T(t, 2n)\alpha$, $T(^{3}He, np)\alpha$, and $^{3}He(^{3}He, 2p)\alpha$ reactions have been recently completed or are in progress.
- An interesting temperature dependence of the $T(t, 2n)\alpha$ neutron energy spectrum has been observed.
- \triangleright Can a scheme for doing energy-dependent R-matrix analyses of these reactions be devised?
- \blacktriangleright Many more applications: 2-nucleon emission, ¹¹B(p, 3 α), β decays

Thanks to collaborators:

- D.T. Casey, J.A. Caggiano, R. Hatarik, D.P. McNabb, D.B. Sayre,... (Lawrence Livermore National Lab)
- G.M. Hale, M.W. Paris. A.B. Zylstra,... (Los Alamos National Lab)
- J.A. Frenje, M. Gatu-Johnson, C.E. Parker,... (MIT)
- A.D. Bacher (Indiana), M. Couder and M. Wiescher (Notre Dame)