Particle Spectroscopy of Unbound States for Nuclear Astrophysics

Jeff Blackmon Louisiana State University

- Reaction rates for novae, X-ray bursts & supernovae
- $\succ \Gamma_p$: (p, γ) & (p, α) rates via the (d,n) and (d,p) reactions
 - ${}^{18}\mathsf{F}(\mathsf{p},\alpha){}^{15}\mathsf{O}$ (Adekola et al.)
 - ${}^{26}AI(p,\gamma){}^{27}Si$ (Pain et al.)
 - N=Z: the future: ³⁰P (Pain et al.)
 - ¹⁹Ne(p,γ)²⁰Na (Belarge et al.)
 - ¹⁷F(p,γ)¹⁸Ne (Kuvin et al.)
- $\succ \Gamma_{\alpha}$: (α ,p) reaction rates
 - The SE-SPS

8

- $^{15}N(\alpha,\!\gamma)^{19}F$ and $^{15}O(\alpha,\!\gamma)^{19}Ne$
- ${}^{14}O(\alpha,p){}^{18}Ne$ and ${}^{18}Ne{}^{18}O$ symmetry
- Concluding remarks

Explosions in proton-rich environments

- Cataclysmic binaries
 - Novae
 - X-ray bursts
- Certain nuclear reactions (on p-rich nuclei) influence observables

Reaction rates and resonances

$^{18}F(p,\alpha)^{15}O$ & Novae

 $^{18}F(d,n)^{19}Ne \rightarrow ^{15}O+\alpha$

Adekola et al., PRC 83, 84, 85 (2011-12).

- > Use ${}^{18}F(d,n){}^{19}Ne$ reaction to populate the states of interest in ¹⁹Ne
- > ¹⁸F(d,p)¹⁹F simultaneously measured
- > Do not detect the neutrons/protons!

Six position sensitive silicon-strip detectors covering $\theta_{lab} \sim 2^{\circ} - 17^{\circ}$

18**F**

Slide 5

 $^{18}F(d,n)^{19}Ne \rightarrow ^{15}O+\alpha \& ^{18}F(d,p)^{19}F \rightarrow ^{15}N+\alpha$

- >> Efficiency complicated
- Definitive mirror assignments still often not clear
- ➤ Reaction models to the continuum
- >> Interference between levels

$^{26}Al(p,\gamma)^{27}Si$ and Galactic ^{26}Al

				07
E_x (keV)	E_{res} (keV)	J^{π}	$\omega\gamma~({ m meV})$	²⁷ Al E_x (keV)
7469	6	$(1/2, 5/2)^+$	$< 2.3 \times 10^{-66} \ [2]^{\rm a}$	7676
(7491)	(28)	$(3/2^+)$	-	7799
7532	⁶⁹ Upmoo	$5/2^+$ ell=2	$< 2.3 \times 10^{-13} \ [2]^{\rm a}$	7790
$(7557)^{\rm b}$		$(3/2^+)$	$< 1.9 \times 10^{-10} \ [2]^{\rm a}$	7858
7590	127	9/2+ ell=0	$< 5.9 \times 10^{-6} \ [3]^{c}$	7807
7652	189	$11/2^{+}$	0.055(9) [4], $0.035(7)$ [5]	7950
7694	²³¹ Measu	$1 = \frac{5}{2^+}$	≤ 0.010 [4]	7722
7704	241	7/2-	0.010(5) [4]	7900
7739	276	$9/2^{+}$	3.8(10) [6], $2.9(3)$ [4]	7998

 Strengths of 69 and 127 keV resonances major uncertainty in ²⁶Al(p,γ)²⁷Si rate

²⁶Al(d,p)²⁷Al to Mirror States

- ➢ 117 MeV ²⁶AI
- ➤ 5x10⁶ pps
- 150 μg/cm² CD₂
- MCP normalization (200 kHz)

Neutron spectroscopic factors in ²⁷AI

^aFrom SMEC calculations using the USD-b effective interaction, using a continuum coupling constant of -650 MeV fm³.

>> Quantifying uncertainties in reaction models and mirror symmetry?

${}^{30}P(d,p\gamma){}^{31}P$ with GODDESS

- ³⁰P(p,γ)³¹S: Most important reaction for understanding enrichment of S and heavier elements in nova ejecta
- Large uncertainty but high level density and only a few resonances will likely contribute
- Proton singles and p-γ coincidences with ³⁰P(d,pγ) and GODDESS?
- Limitations from reaction model and mirror symmetry?

How good is this picture?

$^{15}O(\alpha,\gamma)^{19}Ne(p,\gamma)^{20}Na$

- > ¹⁵O(α,γ)¹⁹Ne reaction is a limiting reaction for CNO breakout ¹⁹Ne(p, γ)²⁰Na reaction should be much faster than ¹⁵O(α , γ)¹⁹Ne T_a=2.0 Spin assignments of states in ²⁰Na are not clear 3315 > Uncertainty in ¹⁹Ne(p,γ)²⁰Na rate is large T₉=1.0 3082 2992 Our approach: 2856 n T_=0.5 ^{2}H 2643 T₀=0.2 2195 ¹⁹Ne RIB ¹⁹Ne + p Vancraeynest et al., ²⁰Na* ²H(¹⁹Ne,n) PRC (1998)
 - Forget about the low energy neutron
 - Detect ¹⁹Ne and p with high spatial and energy resolution

Beam and recoiling heavy ions detected in position-sensitive, gas ionization detector

Results from ¹²C(p,p) test experiment

$^{19}Ne(d,n)^{20}Na \rightarrow ^{19}Ne+p$ Results

- Reconstructed *E_{cm}* spectrum and angular distributions
- > 2.65 MeV state has equal decay branching to g.s. and $\frac{5}{2}^{+}$

80

74

Data 0.66 MeV

1=0 Simulation

1=2 Simulation

120

105

90

75

60

45

30

15

Events / 880 keV

 Thermal population of the firstexcited ¹⁹Ne state contributes to the ¹⁹Ne(p,γ) reation rate

Average Neutron θ_{cm} (deg)

40

78

60

76

¹⁹Ne+p Energy (MeV)

¹⁹Ne+p Energy (MeV)

Slide 13

¹⁹Ne(p,γ)²⁰Na Reaction Rate

 ${}^{17}F(p,\gamma){}^{18}Ne$

¹⁷F(d,n) using RESONEUT

¹⁷*F*(*d*,*n*)¹⁸*Ne* data

¹⁷*F*(*p*,*γ*)¹⁸*Ne Preliminary Results*

- Asymptotic Normalization Coefficients (ANCs) allow accurate determination of the direct capture cross section
- We find the ANCs to be in good agreement with those in the ¹⁸O mirror
- Uncertainties in the reaction rate significantly reduced at nova and X-ray burst temperatures

			Mirror		
$E_x(\text{MeV})$) J^{π}	nlj	$C^2S~^a$	ANC b	ANC c
0	0^{+}	1d5/2	1.22	12.2(12)	-
1.888	2^{+}	2s1/2	0.21	14.9(21)	16(8)
	2^{+}	1d5/2	0.83	2.85(32)	2.6(13)
3.376	4^{+}	1d5/2	1.57	2.73(35)	2.8(11)
3.576	0^{+}	1d5/2	0.28	- ``	-
3.616	2^{+}	2s1/2	0.35	117(20)	148(56)
	2^{+}	1d5/2	0.66	2.46(33)	3.1(12)

^a Li et al.[14]

^b Abdullah et al.[20]

^c This work

Mar. 14, 2017 Slide 18

SE-SPS at FSU

- Former Yale large-acceptance Enge SPS now being installed at Fox Superconducting Accelerator Laboratory at FSU
- > Experiments starting this year!

(α ,p) reaction rates & X-ray bursts

Cyburt et al., APJ (2016)

Rank	Reaction	Type ^a	Sensitivity ^b
1	$^{15}O(\alpha, \gamma)^{19}Ne$	D	16
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4
3	⁵⁹ Cu(p, γ) ⁶⁰ Zn	D	5.1
4	⁶¹ Ga(p, γ) ⁶² Ge	D	3.7
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3
6	${}^{14}O(\alpha, p){}^{17}F$	D	5.8
7	23 Al(p, γ) 24 Si	D	4.6
8	¹⁸ Ne(α, p) ²¹ Na	U	1.8
9	⁶³ Ga(p, γ) ⁶⁴ Ge	D	1.4
10	${}^{19}F(p, \alpha){}^{16}O$	U	1.3
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2.1
12	$^{26}Si(\alpha, p)^{29}P$	U	1.8

(α,p) reactions on T_z=+1 nuclei are important reactions in X-ray bursts

- Uncertainties dominated by alpha widths of resonances
- We will measure alpha decay branching ratios with Enge+SABRE
- > Mirror reactions on stable nuclei, e.g. (⁶Li,d) and (α, α) but is it meaningful?

¹⁵ O(α , γ) ¹⁹ Ne ^a K04, K04-B1, K04-B6	
$^{18}Ne(\alpha, p)^{21}Na^{a}$ K04-B1, K04-B6	
$^{22}Mg(\alpha, p)^{26}Al$ F08	
$^{23}Al(p, \gamma)^{24}Si$ K04-B1	
$^{24}Mg(\alpha, p)^{27}Al^{a}$ K04-B2	
$^{26g}Al(p, \gamma)^{27}Si^{a}$ F08	
$^{28}Si(\alpha, p)^{31}P^{a}$ K04-B4	
³⁰ S(α, p) ³³ Cl K04-B4, K04-B5	
$^{S1}Cl(p, \gamma)^{S2}Ar$ K04-B3	
$^{32}S(\alpha, p)^{36}Cl$ K04-B2	
$^{35}Cl(p, \gamma)^{36}Ar^{a}$ K04-B2	
${}^{56}Ni(\alpha, p){}^{59}Cu$ S01	

Parikh et al., APJ (2008)

Alpha spectroscopic factors in ¹⁹F:¹⁹Ne

~10x discrepancy in alpha spectroscopic factors for mirror states of astrophysical importance?

¹⁹F wavefunctions?
$$- \underbrace{ \begin{array}{c} {}^{12}C \otimes {}^{7}Li \\ {}^{11}B \otimes {}^{8}Be \\ {}^{14}N \otimes {}^{5}He \\ {}^{15}N \otimes {}^{4}He \end{array} }$$

"One can see that the disagreement exceeds one order of magnitude." de Oliveira et al., PRC **55** (1997)

TABLE II. Properties of some mirror levels in ¹⁹F and ¹⁹Ne corresponding to resonances in ¹⁵N(α, γ)¹⁹F and ¹⁵O(α, γ)¹⁹Ne.

<i>E_x</i> (¹⁹ F) (MeV)	$E_x(^{19}\mathrm{Ne})$ (MeV)	J^{π}	$\Gamma_{\gamma}^{\ a}$ (meV)	$B_{\alpha}(^{19}\mathrm{Ne})^{\mathrm{b}}$ 1.4 σ	$\Gamma_{lpha}(^{19}{ m Ne})$ (meV)	$ heta_{lpha}^2(^{19}{ m Ne})^{ m c} \ (imes 10^{-2}\)$	$ heta^2_{lpha}(^{19}{ m F})^{ m d}$ (×10 ⁻²)
4.378	4.379	(7/2)+	> 60	0.044 ± 0.032	> 2.8	> 7.8	0.56
4.550	4.600	(5/2)+	101 ± 55	0.25 ± 0.04	33 ± 18	3.2	4-8
4.556	4.549	(3/2)-	38^{+23}_{-19}	0.07 ± 0.03	$2.9^{+1.7}_{-1.4}$	0.06	0.84
4.683	4.712	(5/2)-	43 ± 8	0.82 ± 0.15	195 ± 36	0.67	1.5-2.4
5.107	5.092	(5/2)+	> 22	0.90 ± 0.09	> 200	> 0.19	0.033-0.33

Maybe not as bad as it appears?

α cluster states in $^{\rm 18}{\rm O}$

J. C. Blackmon INT 17-1a: Predictive Reaction Theory Mar. 14, 2017 Slide 23

α widths in ¹⁸Ne

¹⁸O:¹⁸Ne Comparison?

- ➢ Probably the only state with a clear mirror assignment is 6.20 ↔ 6.15 (1-) level
- > Most important resonance for ${}^{14}O(\alpha,p){}^{17}F$

2 eV from ${}^{14}C({}^{7}Li,t)$ 8 eV from ${}^{17}F(p,\alpha)$

Limitation of mirror symmetry?

8.41 8.28 8.21 8.13

8.04

7.98

8.11

7.94 7.92

Concluding remarks

- Reactions on proton-rich nuclei are important
 - (p,γ)
 (α,p)
 (n,p)
- Direct measurements are very difficult
 - Small cross sections
 - Low radioactive ion beam intensities
- Indirect approaches are crucial
- Reliable reaction models into the continuum are important
 Often narrow states near threshold
- Mirror reactions are much easier experimentally
 - But how reliable are any comparisons?

