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Outline of my talk

Beyond Hauser-Feshbach in the compound nucleus

The program “The purpose of the program is to bring together physicists from the low-energy 
nuclear structure and reaction communities to identify avenues  for achieving 
reliable and predictive descriptions of reactions involving nuclei across the 
isotopic chart.”

“Determine strategies for moving towards microscopic theories of heavy nuclei to 
achieve increasingly more predictive descriptions of the structure and reactions of 
heavy nuclei.”    

A goal



I would like an understanding of fission dynamics, based on a 
nucleonic Hamiltonian.

Motivation

235U(n,f)



I would like an understanding of fission dynamics, based on a 
nucleonic Hamiltonian.

Motivation

235U(n,f) Text

En < D En > D



Spectrum of models 

Only Guet et al.  and Bulgac et al. dynamics relate to the nucleonic
Hamiltonian.

a)  Fong, PR 102 434 (1956)
d)  Lemaitre, PRC 92 034617 (2015)
f)   Randrup & Moller, PRL 106 132503 (2011)

b) Bjornholm & Lynn, RMP 52 725 (1980)
c) Goutte, PRC 71 024316 (2005)
e) Bernard, PRC 84 044308 (2011)
g) Bulgac, PRL 
h) Bouland, PRC 88 054612 (2013)



The transmission coefficient, a key concept.

Bohr-Wheeler  (1939) �F (E) =
1
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Hill-Wheeler (1953) T (E) =

1

1 + exp(2⇡(EB � E)/~!)
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg =—2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k—kF) g 6' k»—
7C F 8', -) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For

849

Well-known in mesoscopic physics as the Landauer 
formula for quantized conductance. 
(See Bertsch, J. Phys. Condens. Matter 3 373 (1991).

B.J. van Wees, et al. Phys. Rev. Lett. 60 848 (1988).

G = 1/R =
e2

2⇡~
X

c
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Wigner, Eyring, Weisskopf   (1930-1937)



Transport through quantum dots (resonances) 

Tres(E) =
�R�L

(E � Eres)2 + (�R + �L)2/4

See Alhassid, RMP 72 895 (2000)

Maximum T=1, when left and
right widths are equal.



States or Channels?

Remarks:
1)There is (as yet) no way to connect the states to the 
channels with the nucleonic interaction.

2)Transport through intermediate states is well established 
in mesoscopic physics.

3) Meager evidence for collectivity in the shape degree of 
freedom near the ground state.

4) Are there any observable consequences? 



Can we make a predictive theory through the CI approach?

Separate configuration space into interacting subspaces q.

Ĥ = ê+ v̂ =
X
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(v̂q + v̂q,q+1)

Remarks:
1) How can we systematically define a discrete basis?   (see arXiv:1611.09484,
                                                                                          PRL 113 262503 )
2) DFT gives our best theory of V(q).    (Skyrme,.. , hybrid H?)
3) e_q  must give a good account of level density  (consistent with 2?)
4) v_q can be postponed by invoking the GOE.
5) pairing interaction in v_(q,q+1) is important at low excitation.
6) At high excitation, v_(q,q+1) should have a Porter-Thomas parameterization.



The Mazama code:  implementing the H_q framework for neutron-induced reactions.

The Hamiltonian is set up in stages, each one connects only with 
its neighbors.
-Entrance channel
-Internal stage I
-internal stage 2
 -...

Entrance channel:  continuum neutron wave function represented on an r-space
mesh.
Woods-Saxon potential: V (ri) =

V0

1 + exp((ri �R)/a) No imaginary W!

black:  V
blue:  phi_n.real
red:  phi_n.imag



Other stages are described by a spectrum of levels with space either uniform or 
following the GOE ensemble.  An imaginary contribution  Gamma/2 may be
added to the energies to represent decay modes other than coupling
to neighboring stages.

Interactions between levels in neighboring stages are taken from a Porter-Thomas
distribution (i.e. Gaussian-distributed).  



Computational issues

Space dimension

Truncation

Matrix is already partially diagonalized.  Dimensionality
of each stage is limited by computer resources, eg. 
N~1000’s for python on a Mac.  Number of stages is
limited only by round-off errors.

Only a limited energy band can be treated
exactly.  Presents problems when the
spacing of levels in the stage is large than
the bandwidth. 

Example:  D = 1 eV in
236U.  Thus, bandwidth
is ~1 keV.



Definition of compound nucleus
   1) level spacing follows GOE spectrum
   2) matrix elements               follow Porter-Thomas distribution

The Hauser-Feshbach formula

�↵,� =
(2l + 1)⇡

k2
�↵��

�2
(prefactor modified by symmetries)

P (h↵|v|xi) = exp(�v

2
/2v
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Double-barrier dynamics

Simple barrier modelHauser-Feshbach

More transition statesHelvetica  justify left

Examples of models that can be analyzed with Mazama.



How far can we get with the simpler barrier model?

h�n

D
i = 10�4

✓
En

1eV

◆1/2

�� ⇡ 35 meV �F ⇡ 100 meV ↵�1 ⇡ 2.8

Single transition state

Average low-energy properties of 235U(n,..) : 

Fluctuation mFluctuation m

0.5  24 15           # delta_r, Nn,  i_vnc
-44.0 0.65 1.25 235. # V_ws a_r r0 A
2  1                 # Nstage seed
200 -50.e-6 1.0e-6 35.0e-9 2.5e-3 w  
         #Nc,E0c,dEc,gamma_c,v_nc
1  50.0e-6  0.0 2.0e-5 1.0 u     
         # 100.e_9 *200 = 2.e_5
10.0e-6 2.0e-8 1000 sig # E0, delE, NE, S/sigma

↵�1
sts ⇡ 0.9 Hauser-Feshbach violation!

Blue:  capture; red: fission



autocorrelation 10 
eV - 30 eV

Adding transition states

↵�1
3ts ⇡ 3

autocorrelation 10 eV - 30 eV

Blue:  capture; red: fission



Two sources of Hauser-Feshbach violation

Bertsch and Kawano,  arXiv:1701.00276 (2017)

Text

1)  well-known in the evaluator community--”width fluctuation 
correction” 

2) In principle known, but forgotten:   T<1.  Need to solve explicitly  
for the S-matrix:

Text

Moldauer, Phys. Rev. C 14 764 (1976).
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Future

Fluctuations:
  1.  When is Porter-Thomas violated?

Claim in PRL 115 052501 (2015):   properties of the entrance
channel can produce violations of otherwise statistical
distributions.

2.  Validity of Ericson’s treatment of compound-nucleus fluctuations

C(✏) =

⌧
�(E)�(E + ✏)

�̄2

�

Width of CN states

Autocorrelation function

C(✏) = 1 +
1

Nc

1

1 + (✏/�̄)2

C(0)� 1 =
1

N

1

1 + (EB/⇡�̄)
E_B>> Gamma

P. Fessenden, et al., Phys. Rev. Lett. 15 796 (1965).




