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Short history of R-matrix methods

Phenomenological R matrix

- Fit of resonances (Wigner and Eisenbud 1947)

- Fit of low-energy cross sections

- Mostly used in nuclear physics (Lane and Thomas 1958)

Calculable R matrix

- Numerical solution of Schrödinger equation

- Convergence problems → Buttle correction (1967)

- Use of Bloch operator (Bloch 1957)

- Mostly used in atomic physics

- Convergence problems due to use of a common boundary condition 

for all basis states → solved by bases without that constraint

(also valid for Dirac equation)

Review: P. Descouvemont, D.B., Rep. Prog. Phys. 73 (2010) 036301



Some key steps

1938: original but not practical idea by Kapur and Peierls

1947: (Phenomenological) R matrix (PRM) introduced by Wigner and Eisenbud

1957: Bloch operator

1958: Rev. Mod. Phys. paper on PRM by Lane and Thomas 

1965: idea of Calculable R matrix (CRM) by Haglund and Robson

1967: first application of CRM by Buttle

1973: introduction of CRM in atomic physics by Burke

1974: microscopic R matrix (D.B. and Heenen)

1976: propagation (Light and Walker)

1994: CRM on a Lagrange mesh (Malegat)

But many misunderstandings till now

- Choice of channel radius (PRM versus CRM)

- Choice of boundary condition parameter

- Choice of basis in CRM

- Utility of Bloch operator (underestimated)



Calculable R matrix

Principle for Schrödinger equation:
Division of the configuration space into two regions at channel radius a

● internal region: r < a

expansion of solution of Schrödinger equation on [0, a] interval

with N  (not necessarily orthogonal) basis functions

● external region: r > a

exact asymptotic expression for Coulomb potential Vc



Schrödinger equation for lth partial wave

Bloch operator

→ Hl not Hermitian over finite interval

→ Hl +   Hermitian over (0,a)

→ and more…

Bloch-Schrödinger equation

Continuity

Important role of Bloch operator



Calculation of R matrix

Matrix elements (integral from 0 to a)

Internal solution

Continuity

R matrix



Interpretation of R matrix 

→ inverse of logarithmic derivative at channel radius 

→ calculated in the internal region 

→ used in the external region to determine the phase shift

→ depends on channel radius

Phase shift

→ independent of B ! 

→ weakly dependent on a (if a large enough)

Calculable / phenomenological R matrix

CRM                          PRM

N ≥ 10                         N ≤ 3



PRM example:
12C + p below 2 MeV

2 parameters per resonance

a = 4 – 6 fm

Cross section fitted between resonances!



Various misconceptions about CRM

● Depends on the channel radius!

The independence on the channel radius is a test of accuracy

● Choice of basis functions → basis states must satisfy:

(see Wigner and Eisenbud) 

Wrong !:

On the contrary, basis functions must provide a variety of values

● Bloch operator is not really necessary!

- restores Hermiticity

- imposes the continuity of the logarithmic derivative

(Wigner-Eisenbud condition unnecessary)

● Optimization of boundary parameter B

Useless ! The results do not depend on B:



Matching at the boundary: Lagrange and sine bases

α + 3He potential, s wave, E = 8 MeV

a = 8, N = 15

exact

Various

→ indistinguishable

from exact solution

→ bad matching, 

→ poor phase shift



Lagrange-mesh simplification

Lagrange mesh and Lagrange basis

N mesh points xi associated with Gauss quadrature

N functions fj(x) satisfying Lagrange conditions

Lagrange functions orthonormal at the Gauss approximation

Potential matrix elements diagonal at the Gauss approximation

D. B., P.-H. Heenen, J. Phys. A 19 (1986) 2041

D. B., Phys. Reports 565 (2015) 1



Shifted Legendre mesh

Regularized Lagrange-Legendre functions over [0,1]

Non-orthogonal but orthonormal at the Gauss approximation

N = 4

D.B., Phys. Reports 565 (2015) 1



Internal wave function

Shifted Lagrange-Legendre mesh on [0,1]:

Regularized Lagrange basis (treated as orthonormal)

Matrix elements of 

Matrix elements are simple functions of xi and xj

Properties:

- no calculations of integrals

- no loss of accuracy due to Gauss quadrature

L.Malegat, J. Phys. B 27 (1994) L691

M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, D. B., Nucl. Phys. A 640 (1998) 37

Recent improvement for high l values: Lagrange-Jacobi mesh



Applications

• Resonating-group method (RGM) 

• Continuum-discretized coupled-channel

method (CDCC)

• Three-body scattering



Resonating-group method

● antisymmetrized wave functions

● non-local RGM equation (with forbidden states)

● equivalent to microscopic cluster model (MCM) 

+ microscopic R-matrix method (MRM)

D.B., P.-H. Heenen, Nucl. Phys. A233 (1974) 304

α + p scattering (s wave)

M. Hesse, J. Roland, D.B., Nucl. Phys. A709 (2002) 184



Continuum-discretized coupled-channel method (CDCC)

Continuum represented by square-integrable functions

(pseudostates or bins = averages of continuum states)

CDCC expansion

→ standard coupled-channels system of equations

Double use of Lagrange-mesh R-matrix method

- Construction of bins

- Resolution of coupled system of equations

Need for propagation (several intervals, easy with Lagrange mesh)

Application to elastic scattering and breakup
T. Druet, D.B., P. Descouvemont, J.-M. Sparenberg, Nucl. Phys. A 845 (2010) 88



c + n + n  three-body scattering

Hyperspherical coordinates

Expansion in hyperspherical harmonics

Infinite system of coupled equations (truncated at Kmax)

1

2

c



Lagrange-mesh R-matrix

Difficulties

● Collision matrix infinite in principle → many channels after truncation

● Asymptotic at very large distances a (250 – 300 fm)

→ propagation: 

- internal region from 0 to  a0 = 25 - 30 fm

- propagation from a0 to a

- external region beyond a

Advantages

● Simplicity and accuracy of Lagrange mesh

No integration over the hyperradius

● Small hyperradial basis (N = 30)

● Analytical wave functions available for applications 

(breakup)



9Li + n + n eigenphases

(11Li continuum)

J = 0  Kmax = 32  Nc = 66

J = 1  Kmax = 25  Nc = 155

J = 2  Kmax = 22  Nc = 133

a = 400, N =30

E.C. Pinilla, P. Descouvemont, D.B., Phys. Rev. C 85 (2012) 054610



A controversy existed about the accuracy of the R-matrix method

for the Dirac equation. The origin of the problem was the same as 

for the Schrödinger equation. 

Accurate calculable R-matrix method for the Dirac equation

- Relativistic matrix Bloch operator (3 parameters)

- Use of bases without constraint at boundary

- No restriction on parameters of Bloch operator (contrary to literature)

Facultative simplification:

- Lagrange-mesh technique

- Very simple: no analytical calculation of matrix elements

- Very accurate

Applied to:

- Determination of phase shifts and scattering wave functions

- Determination of bound-state energies and wave functions

D.B., Phys. Rev. A 92 (2015) 042112

R matrix for Dirac equation



Dirac equation

Dirac spinor

Quantum numbers

Coupled radial equations

2 x 2 matrix radial Hamiltonian



Bloch – Dirac equations

2 x 2 Bloch operator (no derivative!)

Internal Bloch - Dirac equation

External Bloch - Dirac equation

Hermiticity over finite intervals



Solution in the external region: vanishing potential

Solution in the internal region: expansion over an orthonormal basis

No constraint imposed at r = a ! 

Continuum with R-matrix method:
Short-range potential



Internal Bloch-Dirac equation

Expansion on an orthonormal basis (             )

Matrix elements



R matrix and phase shifts for B = 0

Continuity

Generalized R matrix

Compatibility

R matrix

Phase shift (should be essentially independent of a)



R matrix for arbitrary B

Bloch operator

Generalized R matrix

Continuity

Compatibility

General forms of R matrix

- converges for any B

- speed of convergence depends on choice of B



Lagrange-Legendre basis in internal region: 

Gauss approximation for potential

Lagrange-mesh ‘Hamiltonian + Bloch operator’ matrix

● No calculation of integrals → potential values at mesh points



Examples of phase-shift calculations

Square well

Exact R matrix

Woods-Saxon potential



Square well (a = 1, V0 = 4): Examples of choice of B

Simplest cases

E = 1 with N = 12



Square well: Examples of convergence

κ = -1 (s1/2)



Woods-Saxon potential

Potential from Halderson 1988

E = 49.3 MeV

- Stable results

- Fast convergence with respect to N

- Slower convergence with respect to a



Bound states with R-matrix method

Ni basis functions in the internal region: 

Ne basis functions in the external region:

Internal matrix equations

External matrix equations



External non-linear equations

Internal non-linear equations

Resolution by iteration

Regularized Lagrange-Legendre functions in the internal region

Shifted Lagrange-Laguerre functions in the external region



Example: Ground-state of Coulomb potential for Z = 1

Fast convergence with respect to Ni and Ne for both a values

Lagrange-Legendre functions in internal region

Lagrange-Laguerre functions in external region

- No need for analytical expression 

- No need for evaluation of matrix elements



Example: potential – erf(r) / r

Comparison with Lagrange-Laguerre calculation on (0,∞)



Conclusion

R-matrix description of Schrödinger or Dirac continuum

- Accurate phase shifts (no condition at boundary) 

- Lagrange-mesh simplification

- Wave functions available

- Fast convergence

P. Descouvemont, D. B., Rep. Prog. Phys. 73 (2010) 036301

R-matrix description of Dirac bound-states

- New approach with internal and external R-matrices

- Iteration 

- Accurate bound-state energies

- Wave functions available

D. B., Phys. Rev. A 92 (2015) 042112



Phenomenological:

single pole

(dotted: a = 4 fm, 

dashed: a = 5 fm)

Calculable:

microscopic cluster model

(RGM, full line)

a > 8 fm

D.B., P. Descouvemont, F. Leo, Phys. Rev. C 72 (2005) 024309

Exp: V.Z. Goldberg et al, Phys. Rev. C 69 (2004) 031302

14O + p

Comparison of PRM and CRM


