

Proton-transfer reactions on exotic nuclei as a probe of nucleosynthesis

D. W. Bardayan (Notre Dame)

С

Direct vs. Indirect measurements

- Reaction rate combines
 - thermal velocity distribution in stellar plasma (Maxwell-Boltzmann distribution)
 - probability of tunneling through Coulomb barrier (nuclear cross section)
- · For resonant reaction rates:
 - exponentially dependent on resonance energy: E_r
 - linearly dependent on resonance strength: ωγ
- Measure reaction rates:
 - directly
 - indirectly

Rolfs & Rodney (1988)

If resonance is narrow

$$\langle \sigma v \rangle = \left(\frac{2 \pi}{\mu} kT\right)^{3/2} \hbar^2 (\omega \gamma) e^{-E_r/kT}$$

 $E_r \& J^{\pi}$ are most important

$$\omega \gamma = \frac{2J+1}{(2J_x+1)(2J_y+1)} \frac{\Gamma_x \Gamma_y}{\Gamma}$$

"resonance strength"

Experimental approaches with exotic beams

- Challenges
 - Beams are lower intensities and frequently contaminated
 - Inverse kinematics limits resolution
 - "Best" proton transfer reactions have difficult target/detector issues.
- (d,n) reactions
 - (CD_2) target are relatively easy to use
 - Background from spectator C atoms
 - Neutron detection difficult. Groups avoid at all costs.
- (³He,d) reactions
 - Localized targets of ³He hard
 - ³He expensive
 - d detection easy

- Laboratory: ORNL Holified Radioactive Ion Beam Facility
- Beam: 9+F¹⁸
 - Energy 150 MeV
 - Intensity ~ 2 x 10⁶ ions/s

Six position sensitive silicon-strip detectors covering $\theta_{lab} \sim 2^{\circ} - 17^{\circ}$

New technique for (d,n) studies of (p,γ) resonance strengths with GRETINA γ-array and S800 spectrometer PJW, H Schatz et al., NSCL, April 2013

slide courtesy of P. Woods

A. Kankainen et al., Eur. Phys. J. A 52, 6 (2016).

≥ ³⁰⁰ E _										
3854	E_x (keV)	E_{res} (keV)	J^{π}	l	σ_{exp} (µb)	σ_{theor} (µb)	$C^2S(d,n)$	$C^2S(^3\mathrm{He},d)$	$C^2S(d,p)$	$C^2 S_{SM}$
	5547.3(1)		$9/2^{+}$	2	520(110)	850	0.61(13)			0.44/0.42
° 200	6734.0(2)		$11/2^{+}$	2	390(90)	1104	0.35(8)			0.50/0.50
22 22 22	7129.0(2)		$13/2^{+}$	2	630(130)	1262	0.5(1)			0.77/0.74
	7590.1(9)	126.9(9)	$9/2^{+}$	0	≤ 37	375	≤ 0.10	≤ 0.002	0.0093(17)	0.011/0.017
				2	≤ 37	757	≤ 0.05	-	0.068(14)	0.053/0.052
E Y Iwhat I in	7651.9(6)	188.7(6)	$11/2^{-}$	1	280(70)	1260	0.22(5)	0.16	0.14(3)	0.067
50 TA In The Phil	why .			3	280(70)	2517	0.11(3)	0.49	-	0.480
al Lenen Labor of Land and My for	7739.3(4)	276.1(4)	$9/2^{+}$	0	70(30)	370	0.19(9)	0.087	-	0.019/0.011
3500 4000 4500 5000 5500 6	000			2	70(30)	746	0.10(5)	0.124	-	0.0092/0.011
			$9/2^{-}$	1	70(30)	982	0.07(4)	0.064	-	0.038
				3	70(30)	2070	0.035(16)	0.199	-	0.11

$$\sigma_{\rm DC} = \sum_l \, C^2 S \, \sigma_{theo}(l)$$

Need C²S to calculate DC rate.

Will use the ¹⁷F(d,n) reaction to measure the needed spectroscopic strengths.

(³He,*d*) in HELIOS

- HELIcal Orbit Spectrometer (HELIOS)
 - particle ID via time-of-flight
 - − no kinematic compression \rightarrow better resolution
 - high geometrical efficiency
- Measurements of (*p*, *γ*) resonances using target coupled with HELIOS via (³He,*d*)
 - ¹⁴C(³He,*d*)¹⁵N used as commissioning experiment for gas target
 - resolutions of better than 275-keV FWHM achieved . . . improvements to come

jet

beam

Final compression performed by industrial compressor.

Targets densities of 10¹⁹ atoms/cm² = factor of 10 greater than previous targets achieved.

Conclusions/Questions

- Are we wasting out time?
 - Are proton-transfer reactions a reasonable alternative to direct (p,g) measurements?
 - Do we need full angular distributions?
 - Are angle-integrated cross sections enough?
- Is there a preference (d,n), (³He,d), etc...?
 - Is the theory sufficiently developed?
 - How do we do it?
- What else needs to be measured?
 - Is elastic scattering data needed?
- Help!

