

Current nuclear-reaction research at ATLAS

Workshop on "Nuclear Reactions: A Symbiosis between Experiment, Theory and Applications" Institute of Nuclear Theory, Seattle, March 13-16, 2017

Birger B. Back

Overview

ATLAS facility overview

- Re-accelerated CARIBU beams (new EBIS source)
- In-flight radioactive beams

Nuclear reaction studies

- Sub-barrier fusion
- Astrophysical reactions
- Coulomb excitation
- Transfer reactions (HELIOS)

New Instrument developments

- Argonne Gas-Filled Separator
- Argonne In-flight Radioactive Ion Separator
- Summary

ATLAS

ATLAS Accelerator Complex

- Ion sources
 - ECR II for stable beams
 - CARIBU ²⁵²Cf fission fragments
 - low energy beamlines
 - New Electron Beam Ion source
- ATLAS Argonne Tandem Linac Accelerator System (now without Tandem)
 - Room temp RFQ + 51 individually phased superconducting accelerating resonators
- Experimental areas
 - Area II
 - Gas stopper and RFQ cooler to prepare slow beams
 - Beta Paul trap
 - Area III & IV
 - ATSCAT large 36" diam scattering chamber
 - Spectrograph, MUSIC II Astrophysics studies
 - HELIOS HELIcal Orbit Spectrometer Inverse kinematics transfer reactions
 - Gammasphere / GRETINA gamma-ray studies of nuclear structure
 - FMA fusion evaporation product identification m/q resolution small solid angle
 - AGFA fusion evaporation products large solid angle

ATLAS suite of experimental equipment

Main components of CARIBU

- PRODUCTION: "ion source" is
 ²⁵²Cf source inside gas catcher
 - Thermalizes fission fragments
 - Extracts all species quickly
 - Forms low emittance beam
- **SELECTION:** Isobar separator
 - Purifies beam
- DELIVERY: beamlines and preparation
 - Switchyard
 - Low-energy buncher and beamlines
 - Charge breeder to Increase charge state for post-acceleration
 - Post-accelerator ATLAS and weak-beam diagnostics

- Removing stable beam contamination of reaccelerated beams from ECR charge breeder
 - Concept developed and demonstrated by accelerator R&D group
 - Provides two important gains versus ECR charge breeding at CARIBU
 - Higher charge breeding efficiency demonstrated for pulse injection operation (ANL tests at BNL EBIS ... and now operating off-line at ANL)
 - UHV system leads to stable beam background suppression
 - Main goal: suppression of stable beam contaminants
 - As a bonus, gain in intensity for reaccelerated CARIBU beams
 - Light fission peak 17-21% (25-30%) for EBIS+buncher vs. 4-6% for ECR
 - Heavy fission peak 16-20% (20-25%x0.8) for EBIS+buncher vs. 8-12% for ECR

EBIS charge breeder operating

- Charge distribution narrower than with ECR CB \rightarrow higher efficiency in one M/Q
- Beam dominated by charge-bred injected beam, not background from the source

Nuclear Reaction studies

Sub-barrier fusion

Sub-barrier fusion hindrance - discovery

Jiang et al., Phys. Rev. Lett. 89, 052701 (2002) New measurement of ⁶⁰Ni+⁸⁹Y ANI -P-22.76 ANL-P-22,762 10^{2} ⁶⁰Ni + ⁸⁹Y a) 10 E_{c.m.} 123.5 MeV 10⁵ 1 σ(E) (mb) 10⁻¹ Counts 122.1 Me\ E×σ(E) (mb MeV) C.C. calc 10^{-2|} 10^{3|} 121.4 MeV 10⁻³ 10 100 M/Q (channel number 10 10⁻⁵ ⁵⁸Ni +⁵⁸Ni (×40) $\sigma_{exp}/\,\sigma_{theo}$ (b) 90 Zr + 92 Zr (×1) 10 **10**⁻¹ Wong formula 124 128 132 136 120 140 E (MeV) (b) ^{^58}Ni +⁵⁸Ni 10⁻³] σ_{exp}/σ theo $\mathbf{\hat{e}}$ **Observation:** Low energy fall-off 10^{-5} steeper than expected based on conventional potentials 0.88 0.92 0.96 1.00 1.04 E/V_{b}

Barrier distribution, logarithmic derivative, S-factor

• Barrier distribution:
$$B(E) = d^2(\sigma E)/dE^2$$

- Logarithmic derivative: $L(E) = \frac{d(ln\sigma E)}{dE}$
- Relationship : $B(E) = \sigma E \left[\frac{dL(E)}{dE} + (L(E))^2 \right]$
- Advantages:
 - L(E) uses only first derivatives of x-section
 - − Sudden rise \rightarrow fusion hindrance
 - Model independent
- S-factor (astrophysical)
 - $S(E) = \sigma E e^{(2\pi\eta)}$, where
 - η = Sommerfeld parameter: $\eta = Z_1 Z_2 e^2 / (\hbar v)$
- Relationship : $\frac{dS}{dE} = S(E) \left[L(E) \frac{\pi \eta}{E} \right]$
- S-factor maximum: $L(E) = \frac{\pi \eta}{E}$, OR

•
$$L_{cs}(E) = \frac{0.495Z_1Z_2\sqrt{\mu}}{E^{\frac{3}{2}}}(MeV^{-1})$$

Rowley et al. Phys. Lett. B 254, 25 (1991)

Jiang et al., Phys. Rev. Lett. 89, 052701 (2002)

Nuclear structure effects and systematics

Observation: S-factor maximum follows Simple empirical systematics Jiang et al. Phys. Rev. Lett. 93, 012701 (2004)

Astrophysics

r-process and rp-process measurements

MUlti Sampling Ionization Chamber (MUSIC)

Active target: e.g. 4He gas

Experimental results

Birger B. Back, Argonne National Laboratory

Simultaneous measurement of (α, p) and (α, n) reactions

Avila et al., Phys. Rev. C 94, 065804 (2016)

The ²³Na(α ,p)²⁶Mg reaction directly influences the production of ²⁶Al in massive stars

The ${}^{17}F(\alpha,p){}^{20}Ne$ reaction

ΔE (MeV)

Particle ID 2000 17F The ${}^{17}F(\alpha, p){}^{20}Ne$ is one of the primary 10^{3} 1800 reactions that affect the ⁴⁴Ti production 16 in core collapse supernovae 1600 1400 10² G. Magkotsios et al., Astrophys. J. Suppl. Ser. 191, 66 (2010). . 1200 Julio 1000 10 800 600 400200 400 1000 600 800 1200 **Experimental traces** Cathode 3.5_[1000 ²⁰Ne 3F 2.5 100 2 Ŧ σ (mb) **Preliminary** T 10 ¹⁷F 0.5 1= $\overline{\frac{5}{5}}_{c.m.}^{5...}$ (MeV) 5 6 7 8 9 10 11 12 13 14 15 16 3.5 4.5 6.5 7 7.5 2.3 3 4 6 4 Strip Birger B. Back, Argonne National Laboratory

Avila (ANL), Rehm (ANL), Santiago-Gonzalez (LSU), Talwar (ANL)

¹²C+^{10,14,15}C fusion: Implications for X-ray bursts

- Fusion between neutron-rich nuclei is important for understanding the energy production through pycnonuclear reactions in the crust of neutron stars.
- We have performed the first measurements of the total fusion cross sections in the systems ^{10,14,15}C+¹²C using a new active target-detector system, MUSIC.
- In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities.

Fig. 2: Solid points: Experimental data for the S factors in the fusion reactions ${}^{10,12,13,14,15}C + {}^{12}C$. Open circles: Experimental data for ${}^{12,13}C + {}^{12}C$ from literature. Solid lines: Theoretical S factors for the systems ${}^{10,12,13,14,15}C + {}^{12}C$ taken from the calculations of Yakovlev et al.. Dashed line: Theoretical S factor for the system ${}^{19}C + {}^{12}C$.

E_{cm} (MeV)

Carnelli *et al.* Phys. Rev. Lett. **112**, 192701 (2014)

The ${}^{26}Al^{m}(d,p){}^{27}Al$ reaction

Almaraz-Calderon (FSU), Rehm (ANL), Avila (ANL), Santiago-Gonzalez (LSU), Talwar (ANL)

- ${}^{26}\text{Alg}$ (5⁺, t_{1/2} = 7.4x10⁵ y) is observed in the Galaxy via the 1.8-MeV γ -ray line.
- ²⁶Al in the Galaxy is mainly destroyed via ²⁶Al(*p*,γ)²⁷Si reactions.

Credits: MPE Garching/Roland Diehl

- Low-lying proton captures on ²⁶Al^m (0⁺, E_{ex}=0.228 MeV, t_{1/2} = 6.3 s) could influence the destruction of ²⁶Al in the Galaxy.
- We are studying the ²⁶Al^m(d,p)²⁷Al reaction to obtain spectroscopic information of the relevant resonances in ²⁷Si via its mirror nucleus (²⁷Al).

C. Iliadis et al. Astrophys. J. Suppl. Ser. 142, 105 (2002).

Reaction rate for carbon burning in massive stars

Topic: Carbon burning, *i.e.*, ${}^{12}C+{}^{12}C$ fusion is an important route for the production of elements with mass A>20 in the final phases of massive stars >20M_{\odot} or type Ia supernovae.

Data: Particle-γ coincidence measurements allow for clean measurements of the fusion cross section at low bombarding energies.

Results: Clean measurements obtained over the range E_{cm} =2.68-4.93 MeV allows for more reliable extrapolation to lower energies of relevance for stellar carbon burning..

Outlook: A dedicated, longterm measurement using this technique could yield reliable measurements in the Gamow window for carbon burning. Clean events @ E_{cm}=2.84 MeV

22

Coulomb excitation of re-accelerated beams

Birger B. Back, Argonne National Laboratory

Confirmation of Octupole Deformation in heavy Ba

Experiment:

- ¹⁴⁶Ba CARIBU re-accelerated beam
- CHICO-2 and GRETINA
- Coulomb excitation using 3000 ions/sec
- Separation of ^{144,146}Ba from contaminants other than isobars made by the measured two-body kinematics: Time-of-flight difference vs. scattering angle;

Results

- ¹⁴⁶Ba: B(E3;3- \rightarrow 0+) = 48⁺²¹₋₂₉ W.u.
- ¹⁴⁴Ba: B(E3;3-→0+) = 48⁺²⁵-₃₄ W.u.
- Dipole strength: ¹⁴⁴Ba, B(E1) strength is two orders of magnitude larger than it is in ¹⁴⁶Ba;
- The measured E3 strengths are the same in ¹⁴⁴Ba and ¹⁴⁶Ba, despite the two orders of magnitude difference in B(E1) strengths in these two nuclei.
- The results demonstrate, for the first time, the significant impacts of the shell effects on the nuclear intrinsic dipole moments.

B. Bucher, S. Zhu et al., Phys. Rev. Lett. in press

Strength of octupole correlations in neutron-rich Ba

06.06.16 SCIENCE HIGHLIGHT

Confirmed: Heavy Barium Nuclei Prefer a Pear Shape

Cutting-edge experiment with a beam of radioactive barium ions provides direct evidence of nuclear pear-shape deformation. Read More »

B. Bucher et al., Phys. Rev. Lett. 116, 112503 (2016).

Transfer reactions in inverse kinematics

26

Inverse kinematics - wide applications

Measure θ or z (in magnetic field)?

HELIOS - HElical Orbit Spectrometer

d(²⁸Si,p)²⁹Si , 6 MeV/A ²⁸Si on 84 μ g/cm² CD₂ target, B= 1.915 T

Birger B. Back, Argonne National Laboratory

¹²B(d,p) - First published HELIOS result

Angular distributions for ^{11,12}B(d,p)

Normalize angle-dependent efficiency, $\varepsilon(z)$ Use $\varepsilon(z)$ to obtain $d\sigma/d\Omega$ and relative strengths

Got some good press

News archive

News: April 2010

New element 117 discovered

Apr 10, 2010 97 comments

Progress on route to the superheavy island of stability

Black hole twins spew gravitational waves

Apr 11, 2010 🔍 13 comments

Stars less metallic than we thought

Argonne lab tackles exotic nuclei

Apr 9, 2010

First results obtained from new Helical Orbit Spectrometer

Physics spotlighting exceptional research Home About Current Issue Archives For Contribut

APS » Journals » Physics » Synopses » Results from HELIOS

Results from HELIOS

First Experiment with HELIOS: The Structure of ¹³B

B. B. Back, S. I. Baker, B. A. Brown, C. M. Deibel, S. J. Pardo, K. E. Rehm, J. P. Schiffer, D. V. Shetty, A. W. Va Phys. Rev. Lett. 104, 132501 (Published March 31, 20)

Illustration: Courtesy of HELIOS/Argonne National Laboratory

Nuclear Physics

¹⁵C(d,p) - spect. factors for 0⁺, 2⁺, 3⁺ states in ¹⁶C

Wuosmaa et al., PRL, **105**, 132501 (2010)

Question: Are the motions of the protons and neutrons decoupled in ¹⁶C?

B(E2) W.U.

0.26 Imai *et al.* PRL 92, 62501 (2004) ¹⁶C scattering
0.28 Elekes et al., PLB 586, 34 (2004) ¹⁶C scattering
1.73 Wiedeking *et al*, PRL 100, 152501 (2008) Fusion-evap

Recoil

HELIOS data for ¹⁵C(d,p)¹⁶C

¹⁵C(d,p) angular distributions

Wuosmaa et al., PRL, **105**, 132501 (2010)

Curves are DWBA calculations with various optical-model potentials.

Spectroscopic factors obtained from the average over four sets of OMP.

Relative uncertainties in SF dominated by OMP variations Absolute uncertainty (~30%) from beam-integration uncertainty

Conclusion

Relative spectroscopic factors agree with SM calculations – strongly mixed 0⁺ and 2⁺ states
The B(E2) measured by the LBL group is also consistent with SM calculations

37

Neutron single-particle strength in ²⁰O

- ¹⁹O(d,p)²⁰O @ 6.9 MeV/u
- In-flight secondary beams
 - ¹⁸O @ 8.1 MeV/u on cryo cooled D₂ gas target (1400 mbar)
 - ~10⁵ pps
- CD₂ solid target: $260 \mu g/cm^2$

¹⁹O(d,p)

- 8 states identified up to 7 MeV
 - Absolute σ from deuteron scattering (20%)
 - Angular distributions
 - Distorted wave Born approximation
 - Identified I = 0 3⁺ level at 5.23 MeV

¹⁹O(d,p)²⁰O results

- Distorted wave analysis to extract spectroscopic factors
 - Normalized to ¹⁶O(d,p)¹⁷O data
 - 30% uncertainty in total
 - 12% relative to one-another
- Checks w/ sum rules & ¹⁸O(d,p)¹⁹O data
- Superb reproduction of strength by sd shell interactions
- Some strength to 2p-2h (1p-1h) dominated states
 - 0⁺ @ 4.46 MeV
 - 4.99 or 5.64 MeV states
- SOLID \rightarrow / = 0 HATCHED \rightarrow / = 2

$$G_{+} = \frac{2J_f + 1}{2J_i + 1}C^2S,$$

C. R. Hoffman et al., PRC 85, 054318 (2012) Birger B Back Argonne N

Birger B. Back, Argonne National Laboratory

¹³⁶Xe(d,p) - single neutron strength near N=82

The h_{9/2-} and i_{13/2+} neutron strength in ¹³⁷Xe

Absolute cross sections have an estimated uncertainty of $\pm 15\%$

Relative spectroscopic factors extracted using the Ptolemy code and appear to be self-consistent.

Kay et al., Phys. Rev. C 84, 024325 (2011)

	<i>E</i> (keV)	l	J ^π	σ(θ) (mb/sr)	C ² S
	0.0	3	7/2-	18.8, 15.2°	1.00
	601	1	3/2-	10.6 (11.8°)	0.55
ℓ =5	986	1	1/2 ⁻ ,3/2 ⁻	2.2 (16.5°)	0.37
	1218	5	9/2-	1.1 (33.3°)	0.46
	1303	3	5/2-	4.4 (14.9°)	0.23
	1534	3	5/2-,7/2-	2.2 (19.2°)	0.13
	1590*	(5)	9/2-	0.7 (32.5°)	0.25
4	1751	(6)	13/2+	2.2 (37.9°)	0.89
ℓ=6	1841	(1)	3/2-	3.9 (24.9°)	0.31
	1930*	(3)	5/2-,7/2-	2.8 (17.8°)	0.11
	2025*	(1,3)?	-	2.1 (19.7°)	0.22 / 0.16
	2120*	(1,3)?	-	0.9 (19.4°)	0.10/0.06
	2510*	(1)	1/2 ⁻ ,3/2 ⁻	2.0 (22.6°)	0.20
	2650*	(1)	1/2 ⁻ ,3/2 ⁻	2.1 (22.1°)	0.17
	~2900*	(1,3)?	-	0.8 (15.6°)	0.08 / 0.05
	~2990*	(1,3)?	-	1.4 (21.1°)	0.17 / 0.05
	~3150*	-	-	0.3 (35.1°)	0.12**
	~3310*	—	_	0.3 (34.7°)	0.12**
	~3470*	—	_	0.5 (34.4°)	0.18**
	~3610*	—	-	0.4 (34.1°)	0.14**

*Determined in this work

**If assumed 13/2⁺

N = 82 so far ... results fall nicely into systematics

 π + ρ tensor interaction courtesy of T. Otsuka (priv. comm., 2007)

Study of Proton-Hole States in Light Nuclei

- Investigated through single-proton removal reactions
- Provides complementary information to the neutron data
- Additional experimental challenges
- ^{14,15}C(d,³He)^{13,14}B Track proton-hole strength around N = 8 shell gap

The $0\nu 2\beta$ Decay Landscape

 $[T_{1/2}^{0\nu}]^{-1} = (\text{Phase Space Factor}) \times |\text{Nuclear Matrix Element}|^2 \times |\langle m_{\beta\beta} \rangle|^2$

What is changing in the anatomy of initial and final states by precision studies of transfer reactions, e.g., **valence nucleon compositions** and **correlations**

Birger B. Back, Argonne National Laboratory

 $[T_{1/2}^{0\nu}]^{-1} = (\text{Phase Space Factor}) \times |\text{Nuclear Matrix Element}|^2 \times |\langle m_{\beta\beta} \rangle|^2$

- QRPA calculation before measurement
 Rodin et al., Nucl .Phys. A (2006)
- B QRPA calculation after measurement Suhonen et al., Phys. Lett. B (2008)
- C Shell model calculation after measurement
 Caurier et al., Phys. Rev. Lett. (2008)

IMPACT: Factor of ~2 in the calculated matrix element

J. P. Schiffer et al., Phys. Rev. Lett. (2008); BPK et al., Phys. Rev. C (R) (2009)

 DETERMINE what is changing in the anatomy of initial and final states by precision studies of transfer reactions, e.g., valence nucleon compositions and correlations

Instrumentation developments

Argonne Gas-Filled Analyzer AGFA

AGFA: Unique design by David Potterveld

FEATURES:

Compact design – two magnets, length 3.7- 4.3 m Quad: vertical focusing - Dipole: 38° bend and horizontal focusing Gammasphere at target position – solid angle 22.5 msr Small focal plane – one DSSD implantation detector Bp-max: 2.5 Tm

⁴⁸Ca + ²⁰⁸Pb \rightarrow ²⁵⁴No + 2n E_{beam} = 220 MeV

- 1 Torr He, 5 x 2 mm beam spot
- ²⁵⁴No angular distr: Gaussian, $\sigma = 51 \text{ mr}$
- ⁴⁸Ca stripped, (C foil) q_{bar} = 17.1
- 89% of ²⁵⁴No transported to focal plane
- 71% fall within a 64 x 64 mm² DSSD
- Solid angle to DSSD is 22.5 msr.
- Beam is well separated.

Gammasphere move and refurbishment

- New Gammasphere support frame
- New Gammasphere cable support
- Gammasphere moved to AGFA November 2016
- All Gammasphere detectors being refurbished
- Replacement of LN2 valves

AGFA status

STATUS Feb 2017

- Magnets, vacuum chambers, power supplies installed.
- Gammasphere moved to AGFA
- Commissioning: June-July 2017

- Sept. 2016 PAC:
 - 9 AGFA proposals submitted
 - Approved:
 - AGFA Commissioning (Seweryniak, ANL)
 - ²⁵⁵Lr spectroscopy (Clark, LBNL)
 - ²⁵⁴ No high spin spectroscopy (Korichi, Orsay)
 - ³²S + ⁸⁹Y fusion hindrance (Jiang, ANL)

AIRIS

Birger B. Back, Argonne National Laboratory

AIRIS Location within ATLAS

Principle of operation: Magnetic Separation

Test setup with intercepting oil jets

Guy Savard, Tony Levand

Concept:

- Two oil jets of .020" diameter impinging in vacuum.
- Rotate the film by offsetting the jets from outside the chamber.
- Pressure is ~ 250 psi.

High intensity test:

- ⁴⁰Ar at 10-15 μA
- 4 days stable operation
- no deterioration
- I_{beam}> 20 times gas target tolerance
- no degradation of beamline vacuum

Oil film area

Summary of Expected In-Flight Beams

See AIRIS web site for more details: www.phy.anl.gov/airis

Summary

Summary

ATLAS capable to provide a wide range of beams

- Intense stable beams from protons to uranium
- Radioactive beams produced by the in-flight method
- Re-accelerated, neutron-rich beams from ²⁵²Cf fission

Nuclear reactions studies in:

- Astrophysics reactions w. radioactive beams MUSIC and other instruments
- Heavy-ion fusion reactions at sub-barrier energies: Fusion hindrance
- Coulomb excitation of re-accelerated CARIBU beams
- Transfer reactions in inverse kinematics HELIOS:
- New capabilities:
 - EBIS ion source clean reaccelerated CARIBU beams
 - AGFA studies of heavy elements, proton emitters, ¹⁰⁰Sn region etc.
 - AIRIS enhanced in-flight beam production to all target stations

AGFA Team

B.B. Back, ANL **R.V.F. Janssens** , ANL W.F. Henning , ANL T.L. Khoo, ANL J.A. Nolen, ANL **D.H. Potterveld** , ANL G. Savard, ANL **D. Seweryniak**, ANL M. Paul, Hebrew University, Jerusalem **P. Chowdhury**, U-Mass Lowell C.J. Lister, U-Mass Lowell W.B. Walters, University of Maryland **P.J. Woods**, University of Edinburgh K. Gregorich, LBNL **W. Loveland**, Oregon State University

AIRIS team

M. Alcorta (now at Triumf, Canada) B. B. Back C. Dickerson C. R. Hoffman B. P. Kay A. Levand **S. Manikonda** (now at AML, Florida) **B.** Micklich **B.** Mustapha J. Nolen P. Ostroumov R. C. Pardo K. E. Rehm G. Savard J. P. Schiffer **D. Seweryniak**