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L 2% Coherence in Spontaneous Radiation
1 process

R.H.Dicke, Phys.Rev. 93, 99 (1954)

“In the usual treatment of spontaneous radiation by a
gas, the radiation process is calculated as though the
separate molecules radiate independently of each
other.....

It is clear that this model is incapable of describing a
coherent spontaneous radiation process...This
simplified picture overlooks the fact that all the
molecules are interacting with a common radiation
E— field and hence cannot be treated as independent.”...

"A gas that radiates strongly because of coherence
will be called “super-radiant’™.
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Superradiance, collectivization by

decay _ .
Analog in nuclel
Dicke coherent state Interaction via continuum
N identical two-level atoms (Trapped states ) self-organization

coupled via common radiation



“Super-radiant” state

The special unstable state is often referred to
as the “super-radiant” (SR), in analogy to the
Dicke coherent state of a set of two-level
atoms coupled through a common radiation
field. Here, the coherence is generated by the
common decay channel. The stable states
are trapped and decoupled from the

continuum.
R.H.Dicke, Phys.Rev. 93, 99 (1954)
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The Effective Hamiltonian

The total wave function of the system,

%) =Q¥)+P|¥)

satisfies the Schrodinger equation

H|¥)=E|¥)

that can be decomposed into aset of coupled equations:
(E —Hgq )Q“P> - HQPP‘\P>

and

(E —Hpp )P‘LP> = HPQQ‘\P>

where the notation is H,; = AHB
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Effective Hamiltonian (cont'd)

Eliminating P|¥) weobtain:

E-H)Ql¥)=0

with the effective Hamiltonian:
1

E(+)_|_|PP

Here E“) =E +i0

The second term of the effective Hamiltonian contains

a real and imaginary part of the propagator

H

ef
Hoo =Hgo +Hep PQ




The Effective Hamiltonian (cont'd)

These originate from the principal value and delta function §(E—H,;).
The imaginary part, —(i/2)W is given by:
W =27 Hgp[C)(c[Hpq

where c are the open channels.
The effective Hamiltonian in Q-space is non-Hermitian
H = H-Lw

2
where H = H oo Is a symmetric real matrix that includes, apart from the
original Hamiltonian of the Q-space , H, ,
the principal value contribution of the QP-coupling.
The cross section for a reaction a — b is determined by the square of
the scattering amplitude:

Tba(E)=Z(a|HQp|Q>(ﬁ]q¢<q"'—'@|b> ’

a.q'
S=1-iT
The eigenvalues of H*" | &= E-(i / 2)F , are complex poles of the scattering matrix,
corresponding to the resonances in the cross section.



Single Channel

To demonstrate in a simple way the effect of
the anti-Hermitian term we look at the case of
a single channel. Then the matrix W has a
completely separable form:

(qW|q') =27 A, where

A =(d|HeelC)




‘L Separable interaction
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= The W matrix is in general non-diagonal
and the matrix elements are highly
correlated.



“Super-radiant” state

The rank of the factorized matrix is 1, so that
all eigenvalues of W are zero, except one that
has the value equal to the trace of this matrix:

I =;<QW\Q>=2@\A§

2 0
=> I
.

(1 =2a|A¢)




General case

The phenomenon of super-radiance survives
In a general situation of N Intrinsic states and
N. open channels provided N.<< N, if the
mean level spacing D of internal states and
their characteristic decay widths satisfy the
conditions

T, (c)
D

C

K >1




General case

In this regime of overlapping resonances their
Interaction through the common continuum
channels leads to restructuring of the
complex energy spectrum, similarly to the
formation of Dicke’s coherent state. Since the
rank of the factorized W matrix is N, it has
only N. non-zero positive eigenvalues.

The intrinsic space Q is now divided into the
SR subspace of dimension N, and the
subspace of trapped states It> of dimension
N-N. .



For example for two channels the matrix elements of
W will have the form:

W, = AA +BB,



4 A

Effective interaction in the
Q-space

e




Doorways

Frequently only a subset of intrinsic states {Q} connects directly
to the {P} space of channels. The rest of states in {Q} will
connect to {P} states due to the admixtures of these selected
states . The special states coupled directly to the continuum are
the doorways Id>. They form the doorway subspace {D}. The
corresponding projection operator will be denoted as D.

The remaining states will be denoted as ‘ci>

eyt




Doorways

The full Hamiltonian can be decomposed in the following way :

H=(H~_+HDD+H_ +H )
QQ QD DQ

+(HPP + HDP + HPD )
Diagonaliz ing the first partin this expression will give back the states\q)
with thecomponents |d) mixed withstates |g)
(Notethat thereis no H . in the above expression)



Doorways (Corridors)
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Single doorway

Assumeone important doorway \d > The matrix elements of the effective operator W
in the Q - spaceare now given by :

Ne

(aWw|a) =272 (a[Hop|c)c|H o |a)
c=1

Under the doorway assumption,

(q|Hpe|c) =(qld)}(d|Hs|c), where (q|d)is theadmixture of thedoorway tothestate|q)
Then,

({aW|a’) = 27z(g|d )}d|q) Z‘ (d|Hplc) ‘

This matrix element is again separable, irrespective of the number of channels,
and again one finds a single broad statewith a widths:

r, =25 % fald) ZKd Horlcf

naturally this width is simpy thedecay width l“dT of the doorway.



When I1s this picture valid?

The criterion of validity is that the average spacing between
levels in {Q} -space is smaller than the decay width of such
a state "before" the SR is set at work. Consider the spreading

width , Fj , of the doorway state for the fragmentation
into compound states |d). If N, is the number of compound states
in the interval covered by the spreading width, their average energy

spacing is :
!
D~Lld
N

q
Before the SR mechanism is turned on, the average decay

width of a |q) is

Iy =27 |(a|He \c)‘z that can be estimated:

1 1
I I I I
Fg =—5 _ therefore: 1= - j
Nq Dq 1_‘d 1—‘d

r
thus, —i >1
1_‘d



Examples

Isobaric analog state
(IAS).
The IAS, |A) is the result of action of the isospin lowering operator T_ on the parent state |r),
|A) =const-T_|7)
In the compound nucleus, the IAS is surrounded by many compound states
|q) of lower isospin T. =T —1. The Coulomb interaction does not conserve
isospin fragmenting the strength of the IAS over many states |q) that results
in the spreading width Ff\ of the IAS.
If located above the threshold, the IAS can also decay into several continuum channels that

gives rise to the decay width I"}. In heavy nuclei I'\ > T,
The SR mechanism is relevant to this case, providing an explanation why the IAS appears
as a single resonance with a decay width given by that of | A),

Tl = 27|(A|Hge |P)[



Mixing of the IAS with T-1

‘L states

II“IIH“““U_LI_'I'“L After mixing

I ” | | Before mixing




Example “°Pb

In 2°Bi the total width of the IAR s about ', = 250keV, of which T} =170keV and 'y = 80keV.

!
Certainly —- > 1
1_‘A



Example; Glant Resonances (GR)

One describes the giant resonances in nuclei in terms of 1p-1h
configurations. The residual interaction forms collective states
out of these configurations. However, usually the GRs are
located in the particle continuum. The 1p-1h are surrounded by
a vast spectrum of 2p-2h excitations which will mix with the GR.

Denote thesestatesas |b), and the giant resonance by |G). The2p- 2h stateswill decay

into the continuum via the admixture (G|b) (of the GR into the 2p - 2h states).
The GR serves as a doorway . The W matrix elements are given by :

(bW [b) = (b|G)(G[b) (G [c)cV|G)

C

Again the W matrix is of rank one and the SR statewill have the decay width :

r{ -2 ¥feMe :

. I
i _under the condition that F—‘j >1
G




The super-radiant mechanism
applied to intermediate energy
nuclear physics; examples.

The SR mechanism is
applied to several
iIntermediate (and high)
energy phenomena.




‘L N-Nbar excitations

M E>o0
E=0
: R
M §
B . E<o




TABLE I. The real and imaginary parts of the eigenvalues
for VN excitations in the '®O nucleus (see text).

NN state e (MeV) T':/2 (MeV)
1115 0.03
1119 0.02
1121 0.19
1124 0.22
1125 78.53
1129 0.36
1133 0.88
1141 0.23
1146 1.46

N UGLb W
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Nucl. Phys. ASIT, §3 (\999),




N. Auerbach, “Super-radiant States in Intermediate
Energy Nuclear Physics”
Phys. Rev. C50, 1606 (1994).

We could envisage such a mechanism taking placing in
deeply bound hadronic atoms (w-mesic atoms, antipro-
ton atoms) where due to the coupling to the absorption
channel narrow resonances will appear in addition to a
wide super-radiant state. The system of dibaryons is pos-
sibly another example. The coupling of several dibaryon
channels might result in some gquasistationary dibaryon
atates due to the effects of the mechanism we discussed
here. The list of possibilities can be made longer. We
should emphasize, however, that the physical scenario
described here is often not fulfilled. The residual nuclear
interaction has of course a real and an imaginary part.
The real part of the interaction will cause the redistri-
bution of the unperturbed excitation strength and some
of the narrow resonances that emerge will have small ex-
citation strength and will not be observable. Thus the
situation described in this work is special and only in se-
lected physical circumstances will it arise. Only future
studies in this direction may hold the answer to whether
and where in fact such a mechanism is taking place in
nature.



Multi-quark states

The SR mechanism is universal and can take place
In very distinctively different systems.

It is possible that in the sector of quark physics there
are situations in which preconditions exist for the
appearance SR states followed by very narrow
trapped resonances. Some examples are taken from
the multi-quark systems. In some cases it is claimed
that uncharacteristically narrow resonances are
observed. For example the 1545 MeV pentaquark,
the X(3872) tetraquark and other tetraguarks.



Counts

Superradiance In resonant
spectra
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Narrow resonances and

broad superradiant state
in 12C ¢

Bartsch et.al. Eur. Phys. J. A 4, 209 (1999)
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Pentaquark as a possible
candidate for

superradiance
Stepanyan et.al. hep-ex/0307018



-+ pentaquark as a two-state interference

n K+ resonance
state (2]

mMixing
m’reroc’ﬂon

5 t-sem decay
A (E) Ompll’rudes AQ[E)

n kT confinuum
(channel ¢)

Vi =A;2 1=12

Effective Hamiltonian
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Kn scattering crossection
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Sensible parameters

under requirement

*Resonant energy E,=1540 MeV
*Kn threshold energy

*Width of broad peak

M~ H1535 MeV

Yo, (E,) =120 MeV

M., =1560 MeV

Y, (E,) =60 MeV

v=1 MeV
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i Other examples

One could envisage other situations in the field of
intermediate energy when the SR mechanism might
produce narrow states in addition to a very broad state.
Narrow resonances in deeply bound hadronic atoms
(pionic, anti-nucleonic), in deeply bound anti-kaons, in
sigma hypernuclei, etc




The PTD

e One of the best and historically advanced examples of the
manifestation of the interplay between intrinsic dynamics and
decay channels is given by low-energy neutron resonances in
complex nuclel. The series of these well-pronounced separated
resonances were studied long ago and later gave rise to the
“Nuclear Data Ensemble”. Interpreting these resonances as
guasi-stationary levels of the compound nucleus formed after the
neutron capture, agreement was found with predictions of the
Gaussian orthogonal ensemble (GOE) of random matrices.

With exceedingly complicated wave functions of compound
states, the statistical distribution of their components is close to
Gaussian. The neutron decay implements the analysis of a
specific component related to the channel “neutron in continuum
plus a target nucleus in its ground state.” The neutron width is
proportional to the squared amplitude of this component, and the
width distribution appropriate for one channel [Porter-Thomas
distribution (PTD)].




‘L Random Matrix Theory (RMT)

10

Poisson NOE
1726 spacings
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Porter-Thomas Distribution (PTD)

he case of chaos the distribution of wic
iven by the x; withv =1

)

P(T) = (2 /(T)) ¥2e 27




Recent Experiment

Recent experiments with improved accuracy give
evidence of significant devizations from the PTD so that the
attempts to still use the X distribution for the fit invariably

require y<l1.

The new result was interpreted as a consequence of an unknown
non-statistical mechanism or just a breakdown of nuclear theory as
was claimed in the related article.




Our Work. (G. L. Celardo, N. Auerbach,F. M.
Izrailev,and V. G. Zelevinsky PRL 106, 042501 (2011))

The goal of our work was to point out that a correct
description of unstable quantum states in a complicated
many-body system naturally leads to deviations from the
PTD, of the same type as observed . The

random matrix theory was formulated for local statistics in

a closed quantum system with a discrete spectrum governed
by a very complicated Hermitian Hamiltonian.

However, the presence of open decay channels and
therefore the finite lifetime of intrinsic states unavoidably
lead to new phenomena outside of the GOE framework.

We have seen that the coupling to the open channels is _
described by a very special W-matrix that has correlated matrix
elements even when the Hermitian part has no correlations.




Compound Nucleus. Random Matrix
Theory (RMT).

e The matrix H has dimension N that in the nuclear case
should include a large number of shell-model many-body
states important for the dynamics in the energy range
under consideration; in the region of neutron resonances,
N ~ 10°° >>M . With the trace of W equal to 77 , the

parameter defining the dynamics is the ratio of typical
“pare” widths 77/N of individual states to the energy
spacing D. At small values of this parameter, the
resonance widths obey the PTD. With widths increasing,
the system moves to the regime of overlapping
resonances.




Coupling to the continuum

e The individual components of a typical intrinsic state are Gaussian
distributed uncorrelated quantities, and the neutron widths, being
proportional to the squares of those components, display the PTD.
However, the correct description of the dynamics with the
continuum coupling shows the limited character of this prediction.
When the coupling is

weak, k¥ =717/ND <<1, we indeed expect to see well isolated
resonances with the PTD of the widths. With growing continuum
coupling (increase of energy from the threshold), the deviations
become more and more pronounced. At x = 1, a kind of a phase
transition occurs with the sharp redistribution of widths and the
segregation of a superradiant state accumulating the lion’s share
of the whole summed width, an analog of a giant resonance along
the imaginary energy axis.




Results
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Results




Results (for GOE and TBRE)
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Bottom Line

We analyze the statistics of resonance widths in a
many-body Fermi system with open decay channels.

Depending on the strength of continuum coupling,
such a system reveals growing deviations from the
standard chi-square (Porter-Thomas) width
distribution. The deviations emerge from the process
of increasing interaction of intrinsic states through
common decay channels; in the limit of perfect
coupling this process leads to the superradiance
phase transition.The results presented here are
Important for the understanding of recent experimental
data concerning the width distribution for neutron
resonances in nuclei.




