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Coherence in Spontaneous Radiation 

Process

 R.H.Dicke, Phys.Rev. 93, 99 )1954)

 “In the usual treatment of spontaneous radiation by a 
gas, the radiation process is calculated as though the 
separate molecules radiate independently of each 
other…..

 It is clear that this model is incapable of describing a 
coherent spontaneous radiation process…This 
simplified picture overlooks the fact that all the 
molecules are interacting with a common radiation 
field and hence cannot be treated  as independent.”...

 ”A gas that radiates strongly because of coherence 
will be called  “super-radiant””.
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Superradiance, collectivization by 

decay
Dicke coherent state
N identical two-level atoms

coupled via common radiation 

Analog in nuclei
Interaction via continuum

(Trapped states ) self-organization



“Super-radiant” state

 The special unstable state is often referred to 

as the “super-radiant” (SR), in analogy to the 

Dicke coherent state of a set of two-level 

atoms coupled through a common radiation 

field. Here, the coherence is generated by the 

common decay channel. The stable states 

are trapped and decoupled from the 

continuum.
 R.H.Dicke, Phys.Rev. 93, 99 (1954)



The Effective Hamiltonian
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Effective Hamiltonian (cont’d)
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The Effective Hamiltonian (cont’d)
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These originate from the principal value and delta function  .

The imaginary part,  / 2   is given by:
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where  is a symmetric real matrix that includes, apart from the

original  Hamiltonian of the -space ,  , 

the principal value contribution of the -coupling.
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 corresponding to the resonances in the cross section.



Single Channel

 To demonstrate in a simple way the effect of 

the anti-Hermitian term we look at the case of 

a single channel. Then the matrix W has a 

completely separable form:
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 The W matrix is in general non-diagonal 
and the matrix elements are highly 
correlated.



“Super-radiant” state

 The rank of the factorized  matrix is 1, so that 

all eigenvalues of W are zero, except one that 

has the value equal to the trace of this matrix:
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General case

 The phenomenon of super-radiance survives 

in a general situation of N intrinsic states and 

Nc open channels provided  Nc<< N, if the 

mean level spacing D of internal states and 

their characteristic decay widths satisfy the 

conditions

1
)(







D

cqc



General case

 In this regime of overlapping resonances their 
interaction through the common continuum 
channels leads to restructuring of the 
complex energy spectrum, similarly to the 
formation of Dicke’s coherent state. Since the 
rank of the factorized W matrix is Nc , it has 
only Nc non-zero positive eigenvalues.

 The intrinsic space Q is now divided into the 
SR subspace of dimension Nc and the 
subspace of trapped states It> of dimension 
N-Nc .



 For example for two channels the matrix elements of 

W will have the form:

jijiij BBAAW 



Effective interaction in the

Q-space
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Doorways

 Frequently only a subset of intrinsic states {Q} connects directly 

to the  {P} space of channels. The rest of states in {Q} will 

connect to {P} states due to the admixtures of these selected 

states . The special states coupled directly to the continuum are 

the doorways Id>. They form the doorway subspace {D}. The 

corresponding projection operator will be denoted as D.

 The remaining  states will be denoted as
~

q



Doorways
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Doorways (Corridors)
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When is this picture valid?

d

The criterion of validity is that the average spacing between

 levels in {Q} -space is smaller than the decay width of such

 a state  "before" the SR is set at work. Consider the spreading 

width ,  ,

q

 of the doorway state for the fragmentation 

into compound states  q .  If N  is the number of compound states

 in the interval covered by the spreading width, their average energy

 spacing is :
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Examples

 Isobaric analog state 

(IAS).

 The IAS,  A  is the result of action of the isospin lowering operator   on the parent state ,

A

In the compound nucleus, the IAS is surrounded by many compound states

 of lower isospin  T
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S can also decay into several continuum channels that 

gives rise to the decay width .  In heavy nuclei .

The SR mechanism is relevant to this case, providing an explanation why the IAS  appea
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Mixing of the IAS with T-1 
states

IAS

states 1-T

Before mixing

After mixing



Pb208    Example        
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Example; Giant Resonances (GR)

 One describes the giant resonances in nuclei in terms of 1p-1h 

configurations. The residual interaction forms collective states 

out of these configurations. However, usually the GRs are 

located in the particle continuum. The 1p-1h are surrounded by 

a vast spectrum of 2p-2h excitations which will mix with the GR.
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The super-radiant mechanism 

applied to intermediate energy 

nuclear physics;  examples.

The SR mechanism is 
applied to several 

intermediate (and high) 
energy phenomena. 



N-Nbar excitations





N. Auerbach, “Super-radiant States in Intermediate 
Energy Nuclear Physics”

Phys. Rev. C50, 1606 (1994).



Multi-quark states

 The SR mechanism is universal and can take place 

in very distinctively different systems.

It is possible that in the sector of quark physics there 

are situations in  which preconditions exist for the 

appearance SR states followed by very narrow 

trapped resonances. Some examples are taken from 

the multi-quark systems. In some cases it is claimed  

that uncharacteristically narrow resonances are 

observed. For example the 1545 MeV pentaquark, 

the X(3872) tetraquark and other tetraquarks.



Superradiance in resonant 

spectra
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Pentaquark as a possible 

candidate for 

superradiance
Stepanyan et.al. hep-ex/0307018

Bartsch et.al. Eur. Phys. J. A 4, 209 (1999)



Q
+ pentaquark as a two-state interference  

Effective Hamiltonian

2,1 , 2  iii
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Kn scattering crossection
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Other examples

One could envisage other situations in the field of

intermediate energy when the SR mechanism might

produce narrow states in addition to a very broad state.

Narrow resonances in deeply bound hadronic atoms

(pionic, anti-nucleonic), in deeply bound anti-kaons, in

sigma hypernuclei, etc



The PTD 

 One of the best and historically advanced examples of the 
manifestation of the interplay between intrinsic dynamics and 
decay channels is given by low-energy neutron resonances in 
complex nuclei. The series of these well-pronounced separated 
resonances were studied long ago and later gave rise to the 
‘‘Nuclear Data Ensemble’’. Interpreting these resonances as 
quasi-stationary levels of the compound nucleus formed after the 
neutron capture, agreement was found with predictions of the 
Gaussian orthogonal ensemble (GOE) of random matrices.

 With exceedingly complicated wave functions of compound 
states, the statistical distribution of their components is close to 
Gaussian. The neutron decay implements the analysis of a 
specific component related to the channel ‘‘neutron in continuum 
plus a target nucleus in its ground state.’’ The neutron width is 
proportional to the squared amplitude of this component, and the 
width distribution appropriate for one channel [Porter-Thomas 
distribution (PTD)].



Random Matrix Theory (RMT)



Porter-Thomas Distribution (PTD)

 In the case of chaos the distribution of  widths 

is given by the 1 with 2 
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Recent Experiment

 Recent experiments with improved accuracy give 

 evidence of significant deviations from the PTD so that the 

attempts to still use the        distribution for the fit invariably 

 require      <1. 

2



The new result was interpreted as a consequence of an unknown 

non-statistical mechanism or just  a breakdown of nuclear theory as 

was claimed in the related article.



Our Work. (G. L. Celardo, N. Auerbach,F. M. 

Izrailev,and V. G. Zelevinsky PRL 106, 042501 (2011))

 The goal of our work was to point out that a correct

 description of unstable quantum states in a complicated

 many-body system naturally leads to deviations from the

 PTD, of the same type as observed . The

 random matrix theory was formulated for local statistics in

 a closed quantum system with a discrete spectrum governed

 by a very complicated Hermitian Hamiltonian.

 However, the presence of open decay channels and

 therefore the finite lifetime of intrinsic states unavoidably

 lead to new phenomena outside of the GOE framework.

 We have seen that the coupling to the open channels is 
described by a very special W-matrix that has correlated matrix 
elements even when the Hermitian part has no correlations.



Compound Nucleus. Random Matrix 

Theory (RMT).

 The matrix H has dimension N that in the nuclear case 

should include a large number of shell-model many-body 

states important for the dynamics in the energy range 

under consideration; in the region of neutron resonances, 

N ~                 . With the trace of W equal to      , the 

parameter defining the dynamics is the ratio of typical 

‘‘bare’’ widths            of individual states to the energy 

spacing D. At small values of this parameter, the 

resonance widths obey the PTD. With widths increasing, 

the system moves to the regime of overlapping 

resonances. 
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Coupling to the continuum

 The individual components of a typical intrinsic state are Gaussian 
distributed uncorrelated quantities, and the neutron widths, being 
proportional to the squares of those components, display the PTD. 
However, the correct description of the dynamics with the 
continuum coupling shows the limited character of this prediction. 
When the coupling is

 weak,                         ,  we indeed expect to see well isolated 
resonances with the PTD of the widths. With growing continuum 
coupling (increase of energy from the threshold), the deviations 
become more and more pronounced. At         1, a kind of a phase 
transition occurs with the sharp redistribution of widths and the 
segregation of a superradiant state accumulating the lion’s share 
of the whole summed width, an analog of a giant resonance along 
the imaginary energy axis. 

1 ND
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Results



Results



Results (for GOE and TBRE)



Bottom Line

 We analyze the statistics of resonance widths in a 
many-body Fermi system with open decay channels.

 Depending on the strength of continuum coupling, 
such a system reveals growing deviations from the 
standard chi-square (Porter-Thomas) width 
distribution. The deviations emerge from the process 
of increasing interaction of intrinsic states through 
common decay channels; in the limit of perfect 
coupling this process leads to the superradiance 
phase transition.The results presented here are 
important for the understanding of recent experimental 
data concerning the width distribution for neutron 
resonances in nuclei.


