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Part I: The high enerqy frontier from RHIC to LHC

» Viscous hydrodynamics with shear and bulk viscosity

» Dilepton Rates:

1. Hadronic Medium Rates (w/ dissipative corrections)

2. QGP Rate (w/ dissipative corrections)

» Effects of bulk viscous pressure on dilepton yield and v,

Part ll: The Beam Energy Scan

» Initial condition for baryon number
» Viscous hydrodynamics with shear and baryon diffusion

» Baryon diffusion correction to
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An improvement in the description of

hadronic observables
» |IP-Glasma + Viscous hydro + UrQMD [PRL 115, 132301
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ST /s=0.005 Crucial ingredient : Bulk Viscosity
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/s=0.16 Via the same modelling, an

= e from ALICE ; Improved descriptfion of v, of direct
Pb-Pb Vsy\=2.76 TeV photons [PRC 93, 044906] was done.

Thermal dileptons are now also
included.
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Viscous hydrodynamics & bulk pressure

» Dissipative hydrodynamic equations

T.=180 MeV
9, TH =

THY = T — [IAFSS
TOM V = cubu¥ — PAHY
THﬂ + = —(9 - 51'[1'[1_[9 -+ Annﬂ‘uvaﬂv

T, ¥+ = 2ngtV — 5, 1"V 0 + ¢7n§t“n2?
—T,mnffag) + A gllc®Y

n/s = constant

» Other than ¢ and n, all tfransport coefficients are in PRD 85 114047,
PRC 90 024912.

» P(e): Lattice QCD EoS [Huovinen & Petreczky, NPA 837, 26]. (s95p-v1)



Dileptons and goal of this presentation

» Unlike photons, dileptons have an additional d.o.f. the invariant
Mass.
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» Goal: Use the invariant mass distribution to investigate the
influence bulk viscous pressure on thermal dileptons at RHIC and
LHC.

» Note: Only dileptons from the hydro will be studied; no dileptons
from initial dynamics and hadronic transport.



Thermal dilepton rates from HM

» The rate involves:
d*R  a’LM)m;( 1 i, q-u
dtq ~ m3 M2 g2 {_§[lmDV]u}"3E( T )
» Self-Energy [Eletsky, et al., PRC 64, 035202 (2001)]

momyT [ d3k /s u-k
Myg = — - f(2n)3 170 fra(s)ng(x); where x = =

» Viscous extension to thermal distribution function

T," + ¥ — [IARS 4k
0 [ ~ ) @2n)3k0

6ngshear) g na,o(x)[l T Ngo (x)]

kEE [ng,0 () + 605" () + 6n{™ ()|
i
2T2(s + P)

z? (1
I1 §—<§—C5)x

15(¢ + P) (% = 652)2

—* 6nd"e? in Israel-Stewart
approx. [PRC 89, 034904]

m
na,o(X)[l ix na,O(x)]; where z = —

\ T
Snb¥k in RTA

APProx.

[PRC 93,044906]
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Bulk viscous corrections: QGP rate

» The Born rate

d*R d3k, d3k, u-k
—= i R Y. b
d*q (2m)3 (zn)B”q(x)"q(x)0v125 (q —ky —kz); where x = ——

» Shear viscous correction is obtained using Israel-Stewart approx.

» Bulk viscous correction derived from a generalized Boltzmann
equation, which includes thermal quark masses (m) [PRD 53, 5799]

i 10(m?) an_C
W ey C 1"

» In the RTA approximation with e, a constant [PRC 93, 044906]

ZZ

—
X

I1

m
6ngbulk) = — nep (X)[1 — npp(x)]; where z = T

I CEND) (% — CSZ)

» Thera o d*R i d4R(ideal) i d45R(shear) ” d45R(bulk)
dtq G d*q d*q




Anisofropic flow

» Flow coefficients

dN ikl dN
dMprdprdpdy 2w dMprdprdy

1+ z 2v, cos(np — n¥,)
n=1

» Three important notes:

1. Within an event: v,'s are a yield weighted average of the different
sources (e.g. HM, QGRP, ...).

2. The switch between HM and QGP rates we are using a linear
interpolation, in the region 184 MeV < T < 220MeV, given by the EOS
[NPA 837, 26]

3. Averaging over events: the flow coefficients (v,) are computed via

Y . h i h
<v" vicos n (¥ - Lp")v PRC 93, 044906
i PRC 94, 014904
()

v {SP} =

» Lastly the temperature at which hydrodynamics (& dilepton
radiation) is stopped is Tqyiten = 145 MeV at LHC, while at RHIC
Tswiten = 165 MeV.



Bulk viscosity and dilepton yield at LHC
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Bulk viscosity and QGP v, at LHC
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Bulk viscosity and QGP v, at LHC

- Pb-Pb 20-40%

B B ). A carly times, hydrodynamic
éQGP ONLY T (T#”) momentum anisotropy

- 5 Increases under the influence of
bulk viscosity.
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Bulk viscosity and HM v, af LHC

e However, HM dileptons are
modestly affected by én
HM ONLY effects.

\/SNNZZ .76 TeV

v,1" is only affected by flow

w/ 6 of Shear only aAnisotro PV.
w/ 6 of Shear+Bulk

oo Where [ t'dt’ [ d?x, in
0

over the HM region.
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Bulk viscosity and dileptons at LHC
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Bulk viscosity and dileptons at RHIC
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» Bulk viscosity causes an increase in
anisotropic flow build-up in both
the QGP and the hadronic sector
which translates into an T v, (M) of
thermal dileptons.

v$* behaves in the opposite
direction, as they are emitted at
later times.

This anti-correlation is a key feature
of bulk viscosity aft fixed n/s.

Data from STAR
Au-Au Vspn=200 GeV

Centrality (%)




Bulk viscosity and dileptons at RHIC

Au-Au 20-40%
V[SN N=200 GeV

HM + QGP
Toviven = 165 MeV
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This effect is coming from the
switching temperature to UrQMD.

To mimic the effects a hadronic
transport evolution would have on
dileptons, hydrodynamical
evolution was continued until
Towiten = 150 MeV.

Note that hadronic transport will
Not generate as much anisotropic
flow as hydro. Also, shear viscosity
Was not re-adjusted to better fit
hadronic observables; e.g. v<" is
too large with current (fixed) n/s.

A dilepton calculation from a
transport approach is important.
This study is underway.



Part I: Conclusions

Bulk viscosity increases the yield of thermal dileptons owing to viscous
heating and reduction in radial flow acceleration at later times.

Our calculation shows that, for a fixed n/s, there is an anti-correlation
between the effects of bulk viscosity on dilepton v,(M) and charged
hadron’s v, at RHIC. This effect depends on the switching
temperature Tg,iten, PETWEEN hydro and hadronic transport.

Part I: Outlook

In collaboration with Hannah Petersen’s group at FIAS (in particular
Jan Staudenmaier), a computation of dilepton production from
the hadronic transport model SMASH is ongoing.







Initial Conditions

» Longitudinal direction: the spatial rapidity profile baryon density Is

(Insl = 150)" _(Ins] - ns,o)ZH

A+ (1—-A)exp
24N 4 2415,

+ N[1—0(Ins| —ns0)]

9s(Ms) = NO(Ins| — 1) exp

-1
N = [V2rmang, + (1 — A)V2mhns; + 2An5,0]

Ve =200GevV @ @ PHOBOS data @200 GeV

s—=624Gev & k& PHOBOS data @62.4 GeV

V 8NN

Vi = 19.6 GeV Y ¥ PHOBOS data @19.6 GeV

» Parameters of gg(ns) tuned 77 G
to the measured charged
hadron dN¢"*/dn specirum =
extrapolated to /syy = 7.7 GeV P
using scaling from PRC 85,
054902 (2012)

» e(n,) same form as at high /syn

» In the transverse direction: averaged MC-Glauber initial condition
with aligned event plane angles, yielding correct (v,) after
averaging the MC-Glauber events.



Hydrodynamics at lower /syn

» Israel-Stewart dissipative hydrodynamics at lower beam energies:

ik
THY = T B ozut +VH
Ty = eutu’ =B ; Up
P . Ty A u’ 0, Ve + VH = kVH (?) — 1, VH0
o (04 V.. VvV vV
Tnlypu® 0pm*P +mtV= 200" = bppm™ 0 e
= ; — - o) — = —, K = C_, A = =
T rp’ erP T | Y5
PhyY 4 PVgR 1 RTA for massless particles and “?B « 1
2not” = 2n 5 —3 A%V %ua| | ¢ = 0.2 from PRD 77, 066014 (2008)

» Why no bulk2 §nP** couples to baryon number. The effects of
baryon number on §n?** are still being worked out.

» P(e,up): Lattice QCD at finite ug using Taylor expansion + Hadron
Resonance Gas in chem. eq. [in collaboration with McGilll
University and Brookhaven National Laboratory].



Hydrodynamics at lower /syn (con’r’d)l

» Starting from the same initial condifion, while also keeping the
same freeze-out energy density, investigate 3 hydrodynamical

evolutions:
P(¢)
P =
{P(S' #B)

0
VH > {r A uco Va+V“—KV”(H—B)—T VEG — Ay oV
VEa o Y T 4 e 4

» Goals:
To investigate the influence of net baryon density pg (or ug) and

Baryon diffusion V# on dilepton production, where the tfransport
coefficient k is governing the size of V*,



Diffusion corrections to the
particle distribution function

» VH* and Y break spherical symmetry in the local rest frame of
the medium.

» Matching fluid degrees of freedom to particles
» using RTA approximation for I7#

d3k : |
U (dif f) e .
20)3K0 k lnalo(x) + én, (x)_ s b; -

pputt + V# =

TlBT bi ] k#‘/ﬂ
- /T T k/Ty

Sng ) (x) = 11000 SN [

—1 for antibaryons —1/3 for antiquarks
b =<0 for mesons b; = 0 for gluons
1 for baryons 1/3 for quarks

» For m#V, we use Israel-Stewart approximation
kHkVT,,

h
Sng " = ng,0 (O[1 & ng 0 ()] 2T2%(z + P)

» One needs to fold these distributions into the same dilepton
rates as before, with the interpolation being now done in «.



Dilepton yield and elliptic flow
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Dilepton yield and elliptic flow
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Dilepton yield and elliptic flow
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Why is total v, decreased with ug&VH#e

» Recall vietalis g yield weighted avg of HM's and QGP's v,.

» viotalis reduced at high p; because more weight is put on the
QGP contribution of v,, i.e. QGP yield remains the same while
the HM yield is reduced.
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Why does V* change T¢
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» Unlike heat diffusion, V# « 7 (”?B)
and not V¥ pg.




Part ll: Conclusions

» A first (preliminary) dilepton calculation using dissipative
hydrodynamical evolution, shows that:

»  Width broadening of vector mesons in the medium, as expected from a non-
zero ug, is responsible for the main new features seen in dilepton yield and v,,
not present in the case of high energy HIC.

» The dilepton v, (pr) is sensitive to effects that baryon-number diffusion induces
on the evolution of the medium, in the pr region 1.5 < pr < 3 Gel.

» All the ingredients are now In place to start studying the sensitivity
of thermal dileptons to baryon diffusion, within a hydrodynamical
context.



Part Il: Outlook

» Perform a dilepton calculation using an event-by-event
hydrodynamical evolution from an improved initial condition
model, for various parametrizations of k, including a different
temperature-dependence of k, various initial values for V¥,
and different beam energies.

» Include the effects of other dissipative degrees of freedom
(e.g. 1)
» Compute dilepton production from a hadronic transport

model (e.g. SMASH), in order to have a more realistic account
of the total number of dilepton produced in the context of BES.






evolution at LHC with different Ty, isch
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Viscous correction in the QGP

» Effects of viscous corrections on the QGP v, (M)
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NLO QGP dilepton results

Diagrams contribufing af LO & NLO
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v, (py) for M=0.9 GeV
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Variation of v, at \/syy =19.6 GeV

w/0 Pp

w pg W/o Ugin R
w pg W/ g in R
W Pp w/ diff. w/o 6Rdiff
W Pp w/ diff. W/|6Rdiﬁ

4




Motivation to study BES

» Sensitivity of hadronic observables to ug and V#
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Interpolating between QGP and HM

» Unlike the case of high energy collisions (where T is used) to
linear intferpolation between HM and QGP, we now use ¢

d4R d4RQGP d4RHM
dtq OGP amEEm + (1 —76p) d*q
> ki
1 & Sf Sf s fm3
Togp = ac+ b €i<€<€f GeV
0 £ < g & ~ 1]?

The € range over which this interpolation is done is an
estimate, which will be improved upon very soon.



