Dilepton radiation and dynamics of strongly interacting media

Gojko Vujanovic

Institute for Nuclear Theory Workshop: Exploring the QCD Phase Diagram through Energy Scans

University of Washington Seattle, WA October 4th 2016

Outline

Part I: The high energy frontier from RHIC to LHC

- Viscous hydrodynamics with shear and bulk viscosity
- Dilepton Rates:
	- 1. Hadronic Medium Rates (w/ dissipative corrections)
	- 2. QGP Rate (w/ dissipative corrections)
- **Effects of bulk viscous pressure on dilepton yield and** v_n

Part II: The Beam Energy Scan

- Initial condition for baryon number
- Viscous hydrodynamics with shear and baryon diffusion
- Baryon diffusion correction to

Part I: The high energy frontier from RHIC to LHC

An improvement in the description of hadronic observables

IP-Glasma + Viscous hydro + UrQMD [PRL **115,** 132301]

 $\eta/s = constant$

Other than ζ and η , all transport coefficients are in PRD **85** 114047, PRC **90** 024912.

 $P(\varepsilon)$: Lattice QCD EoS [Huovinen & Petreczky, NPA 837, 26]. (s95p-v1)

Dileptons and goal of this presentation

Unlike photons, dileptons have an additional d.o.f. the invariant

6

 Goal : Use the invariant mass distribution to investigate the influence bulk viscous pressure on thermal dileptons at RHIC and LHC.

 Note: Only dileptons from the hydro will be studied; no dileptons from initial dynamics and hadronic transport.

Thermal dilepton rates from HM ⁷

Bulk viscous corrections: QGP rate

The Born rate $\qquad \qquad 8$

 d^4R d^4q $= 1$ d^3k_1 $(2\pi)^3$ d^3k_2 $(2\pi)^3$ $n_q(x)n_{\overline{q}}(x)\sigma v_{12}\delta^4(q-k_1-k_2);$ where $x=$ $u\cdot k$ \overline{T}

- Shear viscous correction is obtained using Israel-Stewart approx.
- Bulk viscous correction derived from a generalized Boltzmann equation, which includes thermal quark masses (m) [PRD **53**, 5799]

$$
k^{\mu}\partial_{\mu}n - \frac{1}{2}\frac{\partial(m^2)}{\partial x} \cdot \frac{\partial n}{\partial k} = C[n]
$$

In the RTA approximation with α_s a constant [PRC **93**, 044906]

$$
\delta n_q^{(bulk)} = -\frac{\Pi \left[\frac{z^2}{x} - x \right]}{15(\varepsilon + P) \left(\frac{1}{3} - c_s^2 \right)} n_{FD}(x) [1 - n_{FD}(x)]; \text{ where } z = \frac{m}{T}
$$
\nTherefore:

\n
$$
\frac{d^4 R}{d^4 q} = \frac{d^4 R^{(ideal)}}{d^4 q} + \frac{d^4 \delta R^{(shear)}}{d^4 q} + \frac{d^4 \delta R^{(bulk)}}{d^4 q}
$$

Anisotropic flow

Flow coefficients

$$
\frac{dN}{dMp_T dp_T d\phi dy} = \frac{1}{2\pi} \frac{dN}{dMp_T dp_T dy} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n\phi - n\Psi_n) \right]
$$

Three important notes:

- 1. Within an event: v_n 's are a yield weighted average of the different sources (e.g. HM, QGP, …).
- 2. The switch between HM and QGP rates we are using a linear interpolation, in the region 184 $MeV < T < 220 MeV$, given by the EoS [NPA **837**, 26]
- 3. Averaging over events: the flow coefficients (v_n) are computed via

 v_n {SP} = $v_n^{\gamma^*}$ v_n^h cos $\left[n \left(\Psi_n^{\gamma^*} \right) \right]$ $-\Psi_n^h$ $\left|\nu_n^h\right|^2\Big \rangle^{1/2}$

PRC **93**, 044906 PRC **94,** 014904

 Lastly the temperature at which hydrodynamics (& dilepton radiation) is stopped is $T_{switch} = 145$ MeV at LHC, while at RHIC $\overline{T}_{switch} = 165$ MeV.

Bulk viscosity and dilepton yield at LHC

- \blacktriangleright dN $dMdy$ is sensitive to the temperature profile.
- Bulk viscosity reduces the cooldown rate of the medium, by viscous heating and also via reduction of radial flow at late times.
- Dilepton yield is increased in the HM sector, since for $T < 184$ MeV purely HM rates are used.

Bulk viscosity and QGP $v₂$ at LHC

 \blacktriangleright $\langle T^{xx} \pm T^{yy} \rangle \equiv$ ≡ 1 N_{events} \sum i N _{events} $\int \tau' d\tau' \int d^2x \lfloor (T_i^{xx} \pm T_i^{yy})$ τ_{0} τ where the $\int_{\tau_0}^{\tau} \tau' d\tau' \int d^2x_\perp$ integrates only over the **QGP** phase.

11

Bulk viscosity and QGP $v₂$ at LHC

 At early times, hydrodynamic $(T^{\mu\nu})$ momentum anisotropy increases under the influence of bulk viscosity.

12

 \triangleright $\delta n^{(bulk)} \propto \frac{T}{E}$ \overline{E} − \overline{E} \overline{T} effects are responsible for the shape seen in QGP v_2 , as $\frac{\Pi}{s+1}$ $\varepsilon + P$ doesn't change sign.

Bulk viscosity and HM $v₂$ at LHC

13

- However, HM dileptons are modestly affected by δn effects.
- \blacktriangleright v_2^{HM} is only affected by flow anisotropy.
- Nhere $\int_{\tau_0}^{\tau} \tau' d\tau' \int d^2x_\perp$ in $(T^{xx} \pm T^{yy})$ integrates only over the **HM** region.

Bulk viscosity and dileptons at LHC

Thermal $v_2(M)$ is a yield weighted average of HM and QGP contributions:

- For $M < 0.8$ GeV $v_2(M)$ behaves same as charged hadrons.
- For $M > 0.8$ GeV sector, $v_2(M)$ 1 because there is more weight in the HM sector.

Bulk viscosity and dileptons at RHIC

15

 Bulk viscosity causes an increase in anisotropic flow build-up in both the QGP and the hadronic sector which translates into an $\uparrow v_2(M)$ of thermal dileptons.

 \blacktriangleright v_2^{ch} behaves in the opposite direction, as they are emitted at later times.

 This anti-correlation is a key feature of bulk viscosity at fixed η/s .

Bulk viscosity and dileptons at RHIC

16

This effect is coming from the switching temperature to UrQMD.

 To mimic the effects a hadronic transport evolution would have on dileptons, hydrodynamical evolution was continued until $\overline{T_{switch}} = 150$ MeV.

 Note that hadronic transport will not generate as much anisotropic flow as hydro. Also, shear viscosity was not re-adjusted to better fit hadronic observables; e.g. v_n^{ch} is too large with current (fixed) η/s .

A dilepton calculation from a transport approach is important. This study is underway.

Part I: Conclusions

- Bulk viscosity increases the yield of thermal dileptons owing to viscous heating and reduction in radial flow acceleration at later times.
- \triangleright Our calculation shows that, for a fixed η/s , there is an anti-correlation between the effects of bulk viscosity on dilepton $v_2(M)$ and charged hadron's $v₂$ at RHIC. This effect depends on the switching temperature T_{switch} between hydro and hadronic transport.

Part I: Outlook

 In collaboration with Hannah Petersen's group at FIAS (in particular Jan Staudenmaier), a computation of dilepton production from the hadronic transport model SMASH is ongoing.

Part II: The Beam Energy Scan

Initial Conditions

 Longitudinal direction: the spatial rapidity profile baryon density is $g_B(\eta_{_S})= N\Theta\big(|\eta_{_S}|-\eta_{_{S,0}}\big)\exp\big|-\big|$ η_s | — $\eta_{s,0}$)² $2\Delta\eta_{s,1}$ $+ N[1 - \Theta(|\eta_s| - \eta_{s,0})] A + (1 - A) \exp$ - $\eta_{\scriptscriptstyle S}|- \eta_{{\scriptscriptstyle S},0}$ $2\Delta\eta_{s,2}$ −1

 $N = |\sqrt{2\pi} \Delta \eta_{s,1} + (1 - A)\sqrt{2\pi} \Delta \eta_{s,2} + 2A \eta_{s,0}|$

Parameters of $g_B(\eta_s)$ tuned to the measured charged hadron $dN^{ch}/d\eta$ spectrum extrapolated to $\sqrt{s_{NN}}$ = 7.7 GeV using scaling from PRC **85**, 054902 (2012)

 \blacktriangleright $\varepsilon(\eta_s)$ same form as at high $\sqrt{s_{NN}}$

2

19

 In the transverse direction: averaged MC-Glauber initial condition with aligned event plane angles, yielding correct $\langle v_2 \rangle$ after averaging the MC-Glauber events.

Hydrodynamics at lower $\sqrt{s_{NN}}$

Israel-Stewart dissipative hydrodynamics at lower beam energies:

$$
\partial_{\mu} T^{\mu\nu} = 0
$$
\n
$$
T^{\mu\nu} = T^{\mu\nu}_{0} + \pi^{\mu\nu}
$$
\n
$$
T^{\mu\nu}_{0} = \varepsilon u^{\mu} u^{\nu} - P \Delta^{\mu\nu}
$$
\n
$$
\tau_{\pi} \Delta^{\mu\nu}_{\alpha\beta} u^{\sigma} \partial_{\sigma} \pi^{\alpha\beta} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta
$$
\n
$$
\tau_{\nu} \Delta^{\mu}_{\alpha} u^{\sigma} \partial_{\sigma} V^{\alpha} + V^{\mu} = \kappa \nabla^{\mu} \left(\frac{\mu_{B}}{T}\right) - \tau_{V} V^{\mu} \theta
$$
\n
$$
\tau_{\pi} = \frac{5\eta}{\varepsilon + P}; \quad \frac{\eta T}{\varepsilon + P} = \frac{1}{4\pi}; \quad \delta_{\pi\pi} = \frac{4}{3} \tau_{\pi}
$$
\n
$$
T_{\nu} = \frac{C}{T}; \quad \kappa = C \frac{\rho_{B}}{\mu_{B}}; \quad \lambda_{\nu\nu} = \frac{3}{5} \tau_{\nu}
$$
\n
$$
2\eta \sigma^{\mu\nu} = 2\eta \left[\frac{\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu}}{2} - \frac{1}{3} \Delta^{\mu\nu} \nabla^{\alpha} u_{\alpha} \right]
$$
\n
$$
T^{\mu} = 0
$$
\n
$$
T_{\nu} \Delta^{\mu} u^{\sigma} \partial_{\sigma} V^{\alpha} + V^{\mu} = \kappa \nabla^{\mu} \left(\frac{\mu_{B}}{T} \right) - \tau_{V} V^{\mu} \theta
$$
\n
$$
T_{\nu} \Delta^{\mu} u^{\sigma} \partial_{\sigma} V^{\alpha} + V^{\mu} = \kappa \nabla^{\mu} \left(\frac{\mu_{B}}{T} \right) - \tau_{V} V^{\mu} \theta
$$
\n
$$
T_{\sigma} = \frac{5\eta}{\varepsilon + P}; \quad \frac{\eta T}{\varepsilon + P} = \frac{1}{4\pi}; \quad \delta_{\pi\pi} = \frac{4}{
$$

- \blacktriangleright Why no bulk? δn^{bulk} couples to baryon number. The effects of baryon number on δn^{bulk} are still being worked out.
- \blacktriangleright $P(\varepsilon, \mu_B)$: Lattice QCD at finite μ_B using Taylor expansion + Hadron Resonance Gas in chem. eq. [in collaboration with McGill University and Brookhaven National Laboratory].

Hydrodynamics at lower $\sqrt{s_{NN}}$ (cont'd) 21

 Starting from the same initial condition, while also keeping the same freeze-out energy density, investigate 3 hydrodynamical evolutions:

$$
P = \begin{cases} P(\varepsilon) \\ P(\varepsilon, \mu_B) \end{cases}
$$

$$
V^{\mu} \to \begin{cases} 0 \\ \tau_V \Delta_{\alpha}^{\mu} u^{\sigma} \partial_{\sigma} V^{\alpha} + V^{\mu} = \kappa V^{\mu} \left(\frac{\mu_B}{T} \right) - \tau_V V^{\mu} \theta - \lambda_{VV} \sigma^{\mu \nu} V_{\nu} \end{cases}
$$

Goals :

- To investigate the influence of net baryon density ρ_R (or μ_R) and
- Baryon diffusion V^{μ} on dilepton production, where the transport coefficient κ is governing the size of V^{μ} .

Diffusion corrections to the particle distribution function 22

- \blacktriangleright V^{μ} and $\pi^{\mu\nu}$ break spherical symmetry in the local rest frame of the medium.
- Matching fluid degrees of freedom to particles

 \blacktriangleright using RTA approximation for V^{μ}

 $\rho_B u^{\mu} + V^{\mu} =$ d^3k $\frac{a\kappa}{2\pi)^3k^0}k^{\mu}\left[n_{a,0}(x)+\delta n_a^{(diff)}(x)\right]; x =$ $k\cdot u$ \overline{T} $-b_i$ μ_B \overline{T} $\delta n_a^{(diff)}(x) = n_{a,0}(x) [1 \pm n_{a,0}(x)]$ $n_{B}T$ $\varepsilon + P$ b_i $u\cdot k/T$ $k^{\mu}V_{\mu}$ T κ/τ_V $b_i = \{$ −1/3 for antiquarks 0 for gluons $b_i = \{$ −1 for antibaryons 0 for mesons 1 for baryons

1/3 for quarks

For $\pi^{\mu\nu}$, we use Israel-Stewart approximation $\delta n_{a}^{(shear)} = n_{a,0}(x) [1 \pm n_{a,0}(x)]$ $k^{\mu}k^{\nu}\pi_{\mu\nu}$ $2T^2(\varepsilon + P)$

 One needs to fold these distributions into the same dilepton rates as before, with the interpolation being now done in ε .

Dilepton yield and elliptic flow

Dilepton yield and elliptic flow

Dilepton yield and elliptic flow

Why is total v_2 decreased with $\mu_B \& V^\mu$?

Recall v_2^{total} is a yield weighted avg of HM's and QGP's v_2 .

26

 \blacktriangleright v_2^{total} is reduced at high p_1 because more weight is put on the QGP contribution of v_2 , i.e. QGP yield remains the same while the HM yield is reduced.

Why is total v_2 decreased with $\mu_B \& V^\mu$?

 Dilepton HM yield decreases via width broadening of vector mesons, and also because V^{μ} further slightly lowers the temperature of the medium in the hadronic sector, affecting dileptons at higher p_T .

27

Why does V^{μ} change T ?

Part II: Conclusions 29

- A first (preliminary) dilepton calculation using dissipative hydrodynamical evolution, shows that:
	- Width broadening of vector mesons in the medium, as expected from a nonzero μ_B , is responsible for the main new features seen in dilepton yield and v_2 , not present in the case of high energy HIC.
	- The dilepton $v_2(p_T)$ is sensitive to effects that baryon-number diffusion induces on the evolution of the medium, in the p_T region $1.5 \lesssim p_T \lesssim 3$ GeV.
- All the ingredients are now in place to start studying the sensitivity of thermal dileptons to baryon diffusion, within a hydrodynamical context.

³⁰ **Part II: Outlook**

- **Perform a dilepton calculation using an event-by-event** hydrodynamical evolution from an improved initial condition model, for various parametrizations of κ , including a different temperature-dependence of κ , various initial values for V^{μ} , and different beam energies.
- Include the effects of other dissipative degrees of freedom $(e.g. Π)$
- **Compute dilepton production from a hadronic transport** model (e.g. SMASH), in order to have a more realistic account of the total number of dilepton produced in the context of BES.

Backup Slides

Viscous correction in the QGP

Effects of viscous corrections on the QGP $v_2(M)$

33

NLO QGP dilepton results 134

• Diagrams contributing at LO & NLO

 $v_2(p_T)$ for M=0.9 GeV

35

Variation of v_2 at $\sqrt{s_{NN}}$ =19.6 GeV 36

Interpolating between QGP and HM 38

Divide the case of high energy collisions (where T is used) to linear interpolation between HM and QGP, we now use ε

$$
\frac{d^4 R}{d^4 q} = r_{QGP} \frac{d^4 R_{QGP}}{d^4 q} + (1 - r_{QGP}) \frac{d^4 R_{HM}}{d^4 q}
$$
\n
$$
r_{QGP} = \begin{cases} 1 & \varepsilon > \varepsilon_f & \varepsilon_f \sim 3.5 \frac{GeV}{fm^3} \\ a\varepsilon + b & \varepsilon_i < \varepsilon < \varepsilon_f \\ 0 & \varepsilon < \varepsilon_i & \varepsilon_i \sim 1 \frac{GeV}{fm^3} \end{cases}
$$

The ε range over which this interpolation is done is an estimate, which will be improved upon very soon.