
Ultrarelativistic Fluid spintronics in Hadron collisions

G.Torrieri

Based on Phys.Rev.C76:044901,2007 ongoing work with Leonardo Tinti and
Master student David Montenegro , and lots of questions I cant answer!
And thanks to Mike for the invite and the title buzzword!



Some phenomenology and back to the envelope reasoning

But no theory why this phenomenology is fundamentally incomplete

Another way to see hydro EFT could help

And how it could help to elucidate things

Questions and prospects experimentalists will be there first!



Phenomenology of polarization in a medium

Historically polarization measurements focused on production plane, since
it is known hadronic interactions generate it via a spin-orbit process. Global
dynamics makes a reaction plane search interging in the context of hydro.

Reaction plane             Production plane

Λ

Definition of production and reaction plane. The beam line (traditionally
the z axis) is perpendicular to the sheet. The dotted line, with arrow,
indicates the direction of polarization of the produced Λ.
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Polarization critically sensitive to initial transparency. The variation reported
in the earlier talk naturally interpreted as approach to transparency
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Ratio of BGK to firestreak predictions as a function of
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s and ση, the

correlation length between spacetime and flow rapidity. Correlation between
position and momentum rapidity also helps
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If hydrodynamic interpretation is correct, might also be worth looking for
jet-plane polarization. Vorticity generated by a fast “jet” traversing the
system in the positive x direction. The arrows in the left panel show the
momentum density of fluid elements in the x-y plane, while the contour
in the right panel shows the x-component of the velocity in the y-z plane.
After the Mach cone, the vortex?



There is a ”small” problem: these are all back of the envelope calculations
essentially ignoring all dynamics

• How does a hydrodynamic system evolve when polarized particles (eg
quarks and gluons) are present and when vorticity is non-zero?

• How is polarization transferred to vorticity within a thermalized medium?

And we didnt do this because we still dont really know how to do this, on
a fundamental level!



GT,Betz,Gyulassy

An ideal hydrodynamic medium is locally isotropic, while polarization is
not. Hence polarization has to go as the breakdown of isotropy, which
in hydrodynamics is controlled by the mean free path. Some dimensional
analysis later it turns out...

〈
P i
q

〉
∼ tanh

[

~ζi

]

∼ ~ζi

~ζi =
lmfp

T

(

ǫijk
d 〈~pk〉
d~xj

)

But is this really true that in ideal hydrodynamics there is no polarization?
After all, in a co-moving frame...



Becattini,Chandra,Del Zanna,Grossi, 1303.3431
GC ensemble with angular momentum as a conserved quantity, fermions (1
species)

exp

(

−pµu
µ

T

)

→ exp

(

−pµu
µ

T

)

(ū, v̄) exp

[
Σµνω

µν

T

](
u
v

)

And Fermi-Dirac statistics. Here

• ωµν vorticity tensor

• Σµν spin projection tensor ∼
(

0 ~σ
~σ 0

)



A rotating statistical model (Becattini, Piccinini,Rizzo, 0711.5253

Treat event as equilibrated and spinning from initial angular momentum
(firestreak model), assign anuglar momentum accordingly.
But this is a globally equilibratd system, not a locally equilibrated one.
Most likely a rough estimate!



Becattini and Csernai, 1304.2247 and upcoming Put formulae above within
a Cooper-Frye formula, couple to hydro code, get a polarization density



But I think this has fundamental issues
Cooper-Frye formula based on ideal isotropic hydro.

dΣµ(T hydro
µν − T particles

µν ) = dΣµ(shydroµ − sparticlesµ ) = 0

• Non-trivial dΣµ affects spin

• (More generally) polarization/vorticity coexist and interact in medium,
not just freezeout. CF is detailed balance



Need relativistic version of theory incorporating vorticity and spin

Nature Physics
12 24−25 (2016)

I.Zutic et al

Zutic, Matos-Abiague, ”Spin Hydrodynamics”, Nature Physics 12 24-25
Takahashi et al”, Nature Physics 12 52-56 (2016)



What is ideal hydro?

Entropy conserved always at maximum at each point in spacetime

Local isotropy in the comoving frame

Vorticity is conserved (Kelvins theorem)

Continuum limit when you break up cells, intensive results stay the same

With polarization, only the first has a chance of being realized even in
the ideal limit. Which means no ideal hydro limit is defined for mediums
with polarization. ”viscous, transport etc. should be on top of this
undefined limit for strong coupling! Related to nonlocality of vorticity.
(Weyssenhoff,Halbach, Becattini, Tinti have partial definitions, but cant
resolve contradiction above)



A note to AdS/CFT fans... this stuff (probably) doesent concern you

Fermion polarization always suppressed by factors of Nc, boson polarization
unobservable (gauge dependent). Landau and Lifshitz (also D.Rishke,B
Betz et al): Hydrodynamics has three length scales

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
c

≪ η

sT

(

or
1√
λT

)

≪ Lmacro



Why is lmicro ≪ lmfp necessary? Without it, microscopic fluctuations
(which come from the finite number of DoFs and have nothing to do with
viscosity ) will drive fluid evolution.

∆ρ/ρ ∼ C−1
V ∼ N−2

c , thermal fluctuations “too small” to be important!
(Lifshitz+Landau has hydrodynamical fluctuation both from thermal ∼ CV

and dissipative ∼ Kn sources)

But we know this approximation is far from perfect, Nc = 3 ≪ ∞ and
dN/dy ∼ 101−3 ≪ ∞

So first scale is always non-negligible. It also controls polarization
distribution. Understanding role of polarization is ”similar” to understanding
role of fluctuations: Lagrangian hydrodynamics and functional integrals
Let us try to define hydro without reference to microscopic DoFs :No quasi
particles, AdS/CFT, just hydro! This is a bottom-up EFT



Hydro as EFT fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(x

µ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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The system is a Fluid if it’s Lagrangian obeys some symmetries
(Ideal hydrodynamics ↔ Isotropy in comoving frame) Solutions generally
break these, Excitations (Sound waves, vortices etc) can be thought of as
”Goldstone bosons”.



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφ

I∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B (actually b =

√
B )

In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = -F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ǫµαβγǫIJK ∂αφ

I∂βφ
J∂γφ

K .

(A useful formula is db
d∂µφI

∂νφI = uµuν − gµν )

Equation of state chosen by specifying F (b) . “Ideal”: ⇔ F (B) ∝ b2/3

b is identified with the entropy and bdF (B)
dB with the microscopic temperature.

uµ fixed by uµ∂µφ
∀I = 0



You can also show that

∂µ

(

b︸︷︷︸
=s

uµ

)

= 0 , s = −dP
dT

=
p+ ρ

T

Ie, b is the conserved quantity corresponding to our earlier group. Up
to dimensional factor corresponds to microscopic entropy. Can also write
everything in terms of Kµ = buµ

Chemical potentials (neglected here) would be implemented by
complexifying φI and promoting them to internal space vectors

An infinite number of global conserved charges for every closed path,
vorticity is conserved. Corresponding to infinite-D diffeomorphism
invariance



Ideal hydrodynamics and the microscopic scale
The most general Lagrangian is

L = T 4
0F

(
B

T 4
0

)

, B = T 4
0 detBIJ , BIJ =

∣
∣∂µφ

I∂µφJ
∣
∣

Where φI=1,2,3 is the comoving coordinate of a volume element of fluid.

NB: T0 ∼ Λg microscopic scale, includes thermal wavelength and g ∼ N2
c

(or µ/Λ for dense systems ). T0 → ∞ ⇒ classical limit
It is therefore natural to identify T0 with the microscopic scale!

Kn behaves as a gradient, T0 as a Planck constant!!!



At T0 < ∞ quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription!

Z =

∫

Dφi exp
[

−T 4
0

∫

F (B)d4x

]

, 〈O〉 ∼ ∂lnZ
∂...

(

eg.
〈

T x
µνT

x′

µν

〉

=
∂2lnZ

∂gµν(x)∂gµν(x′)

)

T0 ∼ n−1/3 , unlike Knudsen number, behaves as a ”Planck constant”

For analytical calculations fluid can be perturbed around a hydrostatic
(φI = ~x ) background

φI = ~x+ (~πL)
︸︷︷︸
sound

+ (~πT )
︸︷︷︸
vortex

Polarization likely to dramatically change things here



And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!

Llinear = ˙~πL
2 − c2s(∇.~πL)2︸ ︷︷ ︸
sound wave

+ π̇T
2

︸︷︷︸
vortex

+Interactions(O
(
π3, ∂π3, ...

)
)

Unlike sound waves , Vortices can not give you a theory of free particles,
since they do not propagate: They carry energy and momentum but stay in
the same place! Can not expand such a quantum theory in terms of free
particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions. This does not mean
the theory is ill-defined, just that its strongly non-perturbative!



The big problem with Lagrangians... usually only non-dissipative terms
A first order term in the Lagrangian can always be reabsorbed as a field
redefinition, i.e. is topological

But there are a few ways to fix it. We focus on coordinate doubling
(Galley,but before Morse+Feschbach)

φI → φ̂I = (φ+I , φ
−

I )

Action given by two copies plus an interaction term

SCTP =

∫ ti

tf

d4x
{

Ls[φ
+]− L∗

s[φ
−] +K[φ̂±]

}

The first two terms are non-dissipative, action doubled. Third term can be
used to model dissipation



Dissipative
extension
of Hamiltons
principle

anti−dissipative

dissipative

L =
1

2

(

mẋ2 − wx2
︸ ︷︷ ︸

SHO

)

→







1

2

(
mẋ+

2 − wx2+
)

︸ ︷︷ ︸
L1






−







1

2

(
mẋ−

2 − wx2−
)

︸ ︷︷ ︸
L2






+



ẋ+x− − ẋ−x+
︸ ︷︷ ︸

K





Standard techniques give you two sets of equations, one with a damped
harmonic oscillator, the other “anti-damped”



Navier-Stokes (GT,D.Montenegro, PRD, in press)
In terms of Kµ = buµ the bulk term is

L(1)
CTP = T 4

o

∑

i,j,k

zijk(K
lγKm

γ )B∂µφiI∂νφjJ∂µK
k
ν .

and the shear term is

L(1)
CTP = T 4

o

∑

i,j,k

zijk(K
lγKm

γ )BB−1
IJ ∂

µφiI∂νφjJ∂µK
k
ν .

These are the simplest terms compatible with most symmetries. But shear
term also breaks volume-preserving diffeomorphism invariance. Effect of
fundamental length?



Going further, second order term?

Problem Causality problem for first order terms (Lagrangian unbounded),
second order terms with no local equilibrium (Ostrogradski’s theorem )

Solution: introduce a new degree of freedom. Keep transversality
condition but drop gradient dependence

Πµν = XIJ∂µφ
I∂νφ

J

XIJ are 6 new degrees of freedom to be fixed by initial conditions...
Equivalent of Israel-Stewart off-diagonal terms

Israel-Stewart/Anisotropic hydrodynamics emerge naturally in Lagrangian
approach



I-S in a lagrangian approach
Πµν = XIJĀ

IJ
µν As these are not conserved quantities, the equation of

motion has to be obtained from Lagrange’s equations

∂µ
∂L

∂(∂X)
=
∂L
∂X

The Israel-Stewart equations of motion Follows easily from the Lagrangian

L = T 4
0F (B) +

1

2
τηπ(Π

µν
− uα+∂αΠµν+ −Πµν

+ uα−∂αΠµν−)

+
1

2
Πµν

± Πµν± +
XIJ±

6

[

(A◦)
IJ
µν ∂

µKν
]

±
︸ ︷︷ ︸

∼σµν

+O
(
(∂u)2

)

Last term non-dissipative, worked out in J. Bhattacharya, S. Bhattacharyya
and M. Rangamani,1211.1020



We are now ready to add polarization in the ideal hydrodynamic limit

Forget doubled Lagrangians for now (but it will be necessary when we add
dissipation)

Break isotropy by introducing extra DoFs transforming as vectors

Use Lorentz and internal symmetries to construct EFT around a conserved
entropy



Conserved charges (Dubovsky et al, 1107.0731(PRD))
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

φI → φIe
iα , L(φI, α) = L(φI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(φI, α) = L(φI, α+ y(φI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy

obviously can generalize to more complicated groups



So how do we implement polarization?
Need local ∼ SO(3) charges and unambiguus definition of uµ (sµ ∝ Jµ)
Chemical shift symmetry, SO(3)α1,2,3 → SO(3)α1,2,3(φI)

• Polarization of many particles is a vector → Ψµν Polarization in isotropic
materials of this form, spinors etc average in many-particle limit. Plus
polarization and vorticity indistinguishable at coarse-graining scale

• Chemical shift: unique definition of uµ, everything conserved flows the
same way

Ψµν = −Ψνµ =

(
0 0

0 α0 exp
[

−∑i=1,2,3αi(φI)T̂i

]

)

αi → αi +∆αi (φI) ⇒ L(b, yαβ = uµ∂
µΨαβ)

yµν ≡ µi for polarization vector components in comoving frame



How to combine polarization with local equilibrium?

Since polarization decreases the entropy by an amount proportinal to the
DoFs and independent of polarization direction

b→ b
(
1− cyµνy

µν +O
(
y4
))

, F (b) → F (b, y) = F
(
b
(
(1− cy2

))

First law of thermodynamics,

dE = TdS − pdV − JdΩ → dF (b) = db
dF

db
+ dy

dF

d(yb)



Tµν → Θµν, the Belinfante tensor!
If field has local net direction, Noether current for a translationally invariant
lagrangian NOT Tµν but tensor incorporating twist: Belinfante-Rosenfeld
In terms of the fundamental fields having transformation properties ψi

Θµν = Tµν−
i

2
∂κ

[
∂L

∂ (∂κψl)
(Jµν)lmψ

m − ∂L

∂ (∂µψl)
(Jκν)lmψ

m − ∂L

∂ (∂νψl)
(Jκµ)lmψ

m

]

where Tµν is the usual definition of energy-momentum tensor and Jµν the
appropriate representation of the Lorentz group

Tµν =
∂L

∂(∂µψ)
∂νψ − gµνL , NB : ψ = φI AND Ψi

[Jµν, Jρσ] = i (Jσρgµσ − Jσνgµρ − Jσµgνρ + Jµρgνσ)

Avoids antisymmetric part of canonical Tµν . (S.Weinberg, QFT1)



Tµν → Θµν, the Belinfante tensor!
If field has local net direction, Noether current for a translationally invariant
lagrangian NOT Tµν but tensor incorporating twist: Belinfante-Rosenfeld
In terms of the fundamental fields having transformation properties ψi

Θµν = Tµν−
i

2
∂κ

[
∂L

∂ (∂κψl)
(Jµν)lmψ

m − ∂L

∂ (∂µψl)
(Jκν)lmψ

m − ∂L

∂ (∂νψl)
(Jκµ)lmψ

m

]

Not unique alternative.

No non-relativistic limit for same reason Pauli matrices and g − 2 arise,
so I dont think its a big disadvantage

Symmetric and Gauge-invariant lack of the former is a much bigger
problem for hydrodynamics. Recovers Tµν = δS

δgµν
Is not Noether current

for translations (spin twisting)



The Belinfante-Rosenfeld tensor for ideal hydrodynamics
yµν is 4-vector of chemical potentials represented as an antisymmetric tensor
By rotation symmetry, dynamics only depends on gradients of chemical
potentials. Hence, a good representation is

yµν = uα∂αΨµν = ∂µZν − ∂νZµ

What this definition means is that the local polarization can be obtained by
integrating the potential along the path defined by uµ

Ψµν =

∫ τ

τ0

dτ (∂µZν − ∂νZµ)

where τ0 is the “starting point” of the evolution, and

dτ =
∂4x

∂3φ
= uµdxµ =

1

6b
∗
(
ǫIJKdφ

I ∧ dφJ ∧ dφK
)



The Belinfante tensor for a polarized fluid

ψl ≡ Zσ ,
∂L

∂ (∂κψl)
(Jµν)

l
mψ

m ≡ ∂L

∂ (∂κZη)
(Jµν)

η
ζ Z

ζ

Using our proposal for how to modify F (b) → F (b(1− cy2)) we get

∂L

∂ (∂κZη)
= yηκg(b, y) , g(b, y) = −b ∂F (X)

∂X

∣
∣
∣
∣
X=b(1−cyµνyµν)

giving

Θµν = Tµν −
i

2
∂κΩ

κ
µν

were

Ωκν
µ = g(b, y)

(

yκσ (Jµν)
σ
ρ Z

ρ − yµσ (J
κ
ν )

σ
ρ Z

ρ − yνσ
(
Jκ
µ

)σ

ρ
Zρ
)



However, just like with Israel-Stewart hydrodynamics, the conservation
equations ∂µΘ

µν = 0 of this tensor will have to be augmented with 4
explicit equations for Ψµν, of the form

−∂α
∂L

∂ (∂αZβ)
+

∂L

∂Zβ
= 0

which describe the relationship between vorticity and polarization. It is easy
to thee that these reduce to

∂β
(
yαβg (b, y)

)
= 0



The Belinfante tensor for a polarized fluid

which can be used to simplify the conservation equations for the Belinfante
tensor, since

∂κ

(

g(b, y)yκσ (J
µν)

σ
ρ Z

ρ
)

= g(b, y)yκσ (J
µν)

σ
ρ ∂κZ

ρ

we get that

∂µ∂κΩ
κ
µν = −∂µ∂κ

(

g(b, y)yνσ (J
µκ)

σ
ρ Z

ρ
)

Since the first two terms of Ωκ
µν

∂µ

(

g(b, y)yκσ (J
µν)

σ
ρ ∂κZ

ρ
)

− ∂κ

(

g(b, y)yµσ (Jκν)
σ
ρ ∂µZ

ρ
)

will add to zero (exchange κ↔ µ in one of them)



Hence, the hydrodynamic equations will be

∂µT
µν
φ + ∂µT

µν
Z + ∂µ∂κ

(

g(b, y)yνσ (J
µκ)

σ
ρ Z

ρ
)

= 0

where

Tµν
φ = (ρ′ + p′)uµuν − p′gµν , Tµν

Z = g(b, y)yµα∂
νZα + gµνF (b, y)

ρ′ = −F (b, y) , p′ = b
dF (b, y)

db
, uµ = ǫµναβǫIJK∂νφI∂αφJ∂βφK

(Note that in general ρ′, p′ depend on y and are not the canonical ones)

g(b, y) = −b dF (X)/dX |X=b(1−cyµνyµν)

Note that Tµν
Z and Belinfante term break diffeomorphism symmetry!



Polarization and vorticity conservation
When polarization is not dynamical (yµµ constant), vorticity conservation
arises as a non-local Noether current of the diffeomorphism invariance of
the theory, specifically

∮

Ω

dxiu
idF (b)

db
= −

∫ 1

0

dτ

∫

d3x
∂L

∂(∂0φI)

dΩI

dτ
δ3
(
φJ − ΩJ(τ)

)

LHS Vorticity defined along closed loop Ω

RHS Noether current of the diffeomorphism moving φI along closed path
Ω in terms of parameter τ

ζIΩ(φ
J) = −

∫ 1

0

dτ
dΩI

dτ
δ3
(
φJ − ΩJ(τ)

)



Polarization and vorticity conservation
If polarization is not zero, the fact that the equation above only moves
around φI and not yµν breaks the symmetry, by an amount

dyµν

dτ
=

∫

d3x∂αyµν∂αφ
Iδ3 (φJ − ΩJ(τ))

Hence, over a closed path we expect vorticity conservation to break down
by an amount

d

dt

∮

Ω

dxiu
idF (b)

db
= ẏαβ

dL

∂(∂µyαβ)
∂µζΩ(φ

J) ≡ 1

2
g(b, y)ẏ2

∫ 1

0

d∆αβ

dτ

∂Ω

∂∆αβ
dτ



d

dt

∮

Ω

dxiu
idF (b)

db
=

1

2
g(b, y)ẏ2

∫ 1

0

d∆αβ

dτ

∂Ω

∂∆αβ
dτ

The LHS is in principle a calculable but non-local quantity representing
the transfer between local polarization and non-local vorticity degrees of
freedom, the relativistic ideal hydrodynamic equivalent of

Nature Physics
12 24−25 (2016)

I.Zutic et al



Instead of a conclusion: further steps

Write down ideal hydrodynamic limit of gas with polarization

Develop it Linearization, updated Kelvin’s theorem, Cooper-Frying etc

Understand the effect of the interplay between polarization and vorticity.
How ”dissipative” is it?

Until this is done and incorporated in a numerical simulation, treat any
prediction of polarization related to hydro with extreme caution!


