Functional renormalization group studies of QCD - a review

Exploring the QCD Phase Diagram through Energy Scans, INT-16-3 INT, Seattle, WA

Nils Strodthoff, LBNL

Fundamental challenges

1. Understanding the **phase structure of QCD**
from first principles
Phase structure at large chemical
potentials largely unknown due to from first principles

Phase structure at large chemical potentials largely unknown due to sign problem in lattice QCD...

adapted from GSI

2. Understanding the **fundamental properties** of strongly interacting matter from its **microscopic description** 1.0

Hadron spectrum

pole masses, decay constants, form factors, scattering amplitudes,...

Realtime observables

elementary spectral functions, transport coefficients...

Christiansen, Haas, Pawlowski, NSt PRL 115 (2015) 11, 112002

Difficult to obtain in Euclidean approaches due to analytic continuation

Nonperturbative approaches

Both challenges require first-principle approaches:

Lattice QCD Functional approaches

- Dyson-Schwinger equations (DSE)
- n-particle irreducible methods (nPI)
- Functional Renormalization Group (FRG)

use relations between off-shell Green's functions

e.g. quark propagator DSE

- \checkmark Complementary to the lattice
- \checkmark No sign problem
- \checkmark Calculation of realtime observables

Functional RG for QCD

Spirit of Wilson RG: Calculate full quantum effective action by integrating fluctuations with momentum k

$$
k \to 0
$$

Functional Renormalization Group (FRG)

+flow equations for n-point functions via functional differentiation

Yang-Mills & Confinement

 \bullet ϵ

YM propagators (T=0)

Self-consistent solution of the system of transversal 2-,3- and 4-point functions Cyrol, Fister, Mitter, Pawlowski, NSt Phys.Rev. D94 (2016) no.5, 054005

Confinement from correlation functions: Finite T results in preparation \triangleright Cyrol, Mitter, Pawlowski, NSt in prep

- \triangleright Fister, Pawlowski, Phys.Rev. D88 (2013) 045010
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010) 262-267

Herbst, Luecker, Pawlowski, (2015), 1510.03830

Confined:
 $\overline{\varphi}_3 = \frac{2}{3}$ $L(\bar{\varphi}_3,0)=0$

 \triangleright Pawlowski, Scherzer, Strodthoff, Wink in prep.

- \blacktriangleright Herbst, Luecker, Pawlowski, (2015), 1510.03830
- \triangleright Fister, Pawlowski, Phys.Rev. D88 045010 (2013)
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010)

Order parameters:

 $\bar{\varphi}_3$

most easily computed in functional methods $L(\langle A_0 \rangle)$

computed on the lattice; now also in the FRG

 $\langle L(A_0)\rangle \leq L(\langle A_0\rangle)$ $\langle L(A_0)\rangle = 0 \iff L(\langle A_0\rangle) = 0$ 7

Towards full QCD...

 \bullet \bullet

Chiral symmetry breaking

χSB <-> resonance in 4-quark interaction (pion pole)

Dynamical Hadronization

Functional methods at T,μ>0

But: so far all require additional phenomenological input

Aim: Quantitative framework for continuum QCD

fundamental parameters of QCD as only input parameters

fQCD collaboration

J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, M. Mitter, J. M. Pawlowski, M. Pospiech, F. Rennecke, NSt, N. Wink

Quark propagator (T=0)

Quenched quark propagator

From the full matter system using quenched gluon propagator as only input

Truncation

Vertex expansion: systematic expansion in terms of 1PI vertices

Perturbative relevance counting no longer valid

Unquenching

Unquenched gluon and quark propagators

Self-consistent, parameter-free solution of the coupled matter-glue system

 \triangleright Cyrol, Mitter, Pawlowski, NSt in prep

Summary

Everything in place for first quantitative results of the full system at finite T and μ

Fluctuation observables

Nf=2 PQM model (QCD-improved PL Pot; PL fluctuations from lattice YM pot; analytical frequency dep.)

- $\mu(\sqrt{s})$ from freeze out curve; rescaled to Nf=2
- T_F from matching experimental skewness
- ➔ kurtosis is prediction

Fu, Pawlowski, Rennecke, Schaefer 1608.04302

- Fu, Pawlowski, Phys.Rev. D93 (2016) no.9, 091501
- \ge Fu, Pawlowski, Phys.Rev. D92 (2015) no.11, 116006

$$
\chi_n^B = \frac{\partial^n}{\partial (\mu_B/T)^n} \frac{p}{T^4}
$$

Realtime observables

 \bullet \bullet

Spectral Functions

Real-time observables from Euclidean framework

$$
\Gamma_R^{(2)}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon),\vec{p})
$$

$$
\rho(\omega,\vec{p}) = \frac{\operatorname{Im} \Gamma_R^{(2)}(\omega,\vec{p})}{\operatorname{Im} \Gamma_R^{(2)}(\omega,\vec{p})^2 + \operatorname{Re} \Gamma_R^{(2)}(\omega,\vec{p})^2}
$$

requires analytical continuation from Euclidean to Minkowski signature, a numerically hard problem

Popular approaches (based on Euclidean data)

- Maximum Entropy Method (MEM)
- Padé Approximants

Alternative: analytic continuation on the level of the functional equation

- \triangleright Kamikado, NSt, von Smekal, Wambach Eur. Phys. J. C74 (2014) 2806
- Floerchinger JHEP 1205 (2012) 021
- \triangleright Strauss, Fischer, Kellermann PRL 109 (2012) 252001

Here Minkowski external momenta appear as external parameters

Spectral Functions

Summary

- \triangleright Directly calculated spectral functions
- \checkmark Tested in scalar and Yukawa models at T, μ > 0
- \vee Allows the inclusion of full momentum dependence

Quark & gluon spectral functions in full QCD

- Pawlowski, NSt Phys.Rev. D92 (2015) 9, 094009
- Tripolt, NSt, von Smekal, Wambach Phys.Rev. D89 (2014) 034010
- > Kamikado, NSt, von Smekal, Wambach Eur.Phys.J. C74 (2014) 2806

Transport Coefficients

Kubo formula for the shear viscosity

$$
\eta = \text{lim}_{\omega \to 0} \, \tfrac{1}{20} \tfrac{\rho_{\pi\pi}(\omega, \vec{0})}{\omega}
$$

 $\rho_{\pi\pi}(\omega,\vec{p}) = \int_x e^{-i\omega x_0 + i\vec{p}\vec{x}} \langle [\pi_{ij}(x), \pi_{ij}(0)] \rangle$ **Require**

Expansion formula

 \triangleright Pawlowski Annals Phys. 322 (2007) 2831-2915

$$
\langle \pi_{ij}[\hat{A}]\pi_{ij}[\hat{A}]\rangle = \pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]\pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]
$$

19

Finite number of diagrams involving full propagators/vertices

η/s in Yang-Mills Theory

 \blacktriangleright Christiansen, Haas, Pawlowski, NSt PRL 115 (2015) 11, 112002

Direct sum:
$$
\frac{\eta}{s}(T) = \frac{a}{\alpha_s (cT/T_c)^{\gamma}} + \frac{b}{(T/T_c)^{\delta}}
$$

$$
\gamma = 1.6 \quad a = 0.15 \quad b = 0.14 \quad c = 0.66 \quad \delta = 5.1
$$

High T: consistent with HTL-resummed pert. theory (fixing γ) supporting quasiparticle picture

Small T: algebraic decay glueball resonance gas

20

 \bullet 21

Summary

➢ **YM theory & QCD phase structure**

towards a quantitative continuum approach to QCD

- \vee Quantitative grip on fluctuation physics in the vacuum
- \Box Finite temperature and density
- \Box Nuclear matter: nuclear binding energy...

➢ **Elementary spectral functions**

new approach to analytical continuation problem

 \checkmark tested in low energy eff. models (O(N), QM model)

 \Box quark & gluon, vector meson, ...

➢ **Transport Coefficients**

from loop expansion involving full propagators and vertices

- \vee Global quantitative prediction for η/s in YM theory
- \Box full QCD, bulk viscosity, relaxation times

Thank you for your attention!