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The new/current pig in town

"Eine Sau durchs Dorf treiben”

" Chasing another pig through the village.”

This German expression, meaning pushing a new cause before finishing an
old one.

Let's focus on the current pig(s) in town
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Two main roads

Bulk observables
@ Observables which are sensitive
to the softening of the
Equation of state
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Two main roads

Bulk observables
@ Observables which are sensitive
to the softening of the
Equation of state
@ Most discussed: The "collapse
of flow" aka a negative v; of

Fluctuation observables

@ Observables which are sensitive
to non-equilibrium aspects of
the phase transition

@ At the Critical point:
enhancement of thermal
fluctuations

@ At the phase transition: cluster

protons. _ -
formation due to mechanical
instabilities.
Both are rather " difficult” regarding modeling.
Fluctuations amplify the signal, but also uncertainties.

Jan Steinheimer
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| shouldn't have to emphasize this

Why dynamical models?
Finite number of particles and volume
Conservation laws
Finite Lifetime
Can separate out different physics effects
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Non-Equilibrium Phase Transition

Equilibrium Phase Transition
(Maxwell construction)

As the system dilutes, the phases
are always well separated

Density

Length
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Non-Equilibrium Phase Transition
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Phase separation

Initialize Random noise in the unstable region and let the phases separate.

Requires: Fluid dynamics + an EoS with mechanically unstable phase +
the surface energy J
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Can be done, has been done

Initialize Random noise in the unstable region and let the phases separate.

Ideal fluid dynamics + an EoS with mechanically unstable phase + the
surface energy J

09/20/2016 733
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Moments of the Baryon Density

Extract moments of the net baryon density distribution:

W = 3 / o)V p(r) dPr
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Translate to observables

Usually one measures moments of Number-distributions
e Variance 02 = (§N?)
@ Skewness S = (ON?) /( M
e Kurtosis k = ((6N*) /o?)

Can also be extracted from fluid dynamics, in a spatial volume.
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Translate to observables

Usually one measures moments of Number-distributions
e Variance 0 = (§N?)
o Skewness S = (§N3) /(02)3/2
o Kurtosis k = ((6N*) /o*) — 3

Can also be extracted from fluid dynamics, in a spatial volume.
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Translate to observables

Usually one measures moments of Number-distributions
e Variance 0 = (§N?)
o Skewness S = (§N3) /(02)3/2
o Kurtosis k = ((6N*) /o*) — 3

Can also be extracted from fluid dynamics, in a spatial volume.
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The Critical Point
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Critical Point:

@ Thermal fluctuations enhanced only at the critical point — reached only by precise tuning.

@ To some degree also at the spinodals.

v
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The Critical Point

QN [MeV/Hm?]

~ -
Nl S

- —p, =938
—— Critical Point

3= T
N O Local Maxima || —y_ = 922
AR ® tocaMinima | "o

04 05 06

Critical Point:

@ Thermal fluctuations enhanced only at the critical point — reached only by precise tuning.
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Fluctuation on all possible scales
No creation of fluctuations by the EoS. Driven by field dynamics/ thermal fluctuations.

To some degree also at the spinodals.
Amplitudes of fluctuation are not driven by pressure gradient: Timescales?
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The Critical Point
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Critical Point:

Thermal fluctuations enhanced only at the critical point — reached only by precise tuning.
To some degree also at the spinodals.
Amplitudes of fluctuation are not driven by pressure gradient: Timescales?

Fluctuation on all possible scales

No creation of fluctuations by the EoS. Driven by field dynamics/ thermal fluctuations.

Can be done:
@ Fluid dynamics
@ + The correct EoS
@ -+ thermal fluctuations / explicit
propagation of chiral field

@ = chiral fluid dynamics

M.Nahrgang, S.Leupold, C.Herold and
M.Bleicher, Phys. Rev. C 84, 024912 (2011)

Jan Steinheimer
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Things that make the simulations vs. data complicated

@ Volume fluctuations, i.e. fluctuations of Nyt
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Things that make the simulations vs. data complicated

@ Volume fluctuations, i.e. fluctuations of Nyt

@ The stopping mechanism.

Different phase transitions and the importance of the EoS.
Liquid-Gas vs. deconfinement transition.

The role of strangeness.
Cooper-Frye, the big poissonizer
Effects of the final/hadronic phase.

Measuring deuterons?
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Volume fluctuations

What are volume fluctuations?
In this non-equilibrium system the notion of a volume is ill-defined.

@ The system under investigation is small and rapidly expanding.
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Volume fluctuations

What are volume fluctuations?

In this non-equilibrium system the notion of a volume is ill-defined.
@ The system under investigation is small and rapidly expanding.
@ Emission of particles does not occur at a fixed time.
@ Even more so for kinetic freeze-out

@ Usually (an average) Npq,+ is taken as proxy for the volume. Or
better the energy content of the system.

09/20/2016 1233



How to constrain volume fluctuations

We will use the introduced fluid dynamics model with a mechanically
unstable phase

@ We can select events with any given Nyt
@ Use Cooper-Frye for particle production

@ Then calculate the net baryon number /M in a given longitudinal
interval
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How to constrain volume fluctuations

We will use the introduced fluid dynamics model with a mechanically

unstable phase

@ We can select events with any given Np

@ Use Cooper-Frye for particle production

@ Then calculate the net baryon number /M in a given longitudinal

interval
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Jan Steinheimer
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@ Strong effect from Np4,¢ bin

size.

@ 5 participant bins OK?
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We will use the introduced fluid dynamics model with a mechanically
unstable phase

@ We can select events with any given Np
@ Use Cooper-Frye for particle production

@ Then calculate the net baryon number /M in a given longitudinal
interval

30 T T T
[ Baryons:

@ Strong effect from Np4,¢ bin
size.

@ 5 participant bins OK?
@ Interesting z-dependence.
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How to constrain volume fluctuations

We will use the introduced fluid dynamics model with a mechanically

unstable phase

@ We can select events with any given Np

@ Use Cooper-Frye for particle production

@ Then calculate the net baryon number /M in a given longitudinal

interval

30 T T T T T

[ Baryons:

1 spectator bin
- - - - 5 spectator bin
| 50 spectator bin

0.5 -

oY P P PR U PR P BV A B

1

1

Jan Steinheimer

00 04 08 12 16 20 24 28 32 36 40
z-coordinate [fm]

@ Strong effect from Np4,¢ bin

size.

@ 5 participant bins OK?

@ Interesting z-dependence.

@ Problem: N, definition in

models # definition in
experiment.

09/20/2016
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The stopping mechanism

Stopping in transport
@ For beam energies > \/snn =~ 7 GeV — string excitation.
@ For simplicity string models employed have instant energy loss.

10 T T

ptpally t =5fmic
------ p+p |y<0.5 A=1(p+p)
——AutAually A =197 (Au+Au)
------ Au+Au |y|<0.5

1/2A) dN,_/dy

0.01 M.
0 2 3 5
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The stopping mechanism

Stopping in transport
@ For beam energies > \/snn =~ 7 GeV — string excitation.
@ For simplicity string models employed have instant energy loss.

10 T T
p+pally t =5fmlc
------ p+p |y<0.5 A=1(p+p)
——Au+Aually A =197 (Au+Au)
------ +, <
5 ,L Au+Au |y|<0.5
3
P4
°
<
)
0.01 L L YA n L
0 5

z [fm]

@ Strong correlation between rapidity and z-coordinate.

@ Stopping in A+A due to secondary interactions.

Jan Steinheimer
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The stopping mechanism

Stopping in transport
@ Question 1: How well are the secondaries understood?

@ Question 2: What if there is no instant energy loss?

Constant deceleration:
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A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph].
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The stopping mechanism

Stopping in transport
@ Question 1: How well are the secondaries understood?

@ Question 2: What if there is no instant energy loss?
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A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph].
Energy loss is more complicated.
TS



The stopping mechanism

Stopping in transport
@ Question 1: How well are the secondaries understood?

o Question 2: What if there is no instant energy loss?

May be relevant for v; too!? J
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Different types of phase transitions

@ The EoS can be an essential ingredient for the simulation.
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Different types of phase transitions

@ The EoS can be an essential ingredient for the simulation.

@ For phenomenological purposes there can be two types of phase
transition, which may lead to distinct differences in the dynamical

evolution.

log T (K)

l0g,, Py (&/cm?)
M. Hempel, V. Dexheimer, S. Schramm and |.
losilevskiy, Phys. Rev. C 88, no. 1, 014906
(2013)
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Different types of phase transitions

@ The EoS can be an essential ingredient for the simulation.

@ For phenomenological purposes there can be two types of phase
transition, which may lead to distinct differences in the dynamical

evolution.

log T (K)

metallic solid

l0g,, Py (&/cm?)

M. Hempel, V. Dexheimer, S. Schramm and |.

losilevskiy, Phys. Rev. C 88, no. 1, 014906
(2013)

Jan Steinheimer

Quark Gluon Plasma
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Hempel, V. Dexheimer, S. Schramm and |I.
losilevskiy, Phys. Rev. C 88, no. 1, 014906
(2013
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Different types of phase transitions

@ Important difference: pressure along the transition line.
@ Decides what is the true ground state of matter.
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Different types of phase transitions

@ Important difference: pressure along the transition line.
@ Decides what is the true ground state of matter.

@ True ground state of matter

400] B FadronQuar E0% should be nuclear matter.
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J.S., J. Randrup and V. Koch, Phys. Rev. C 89, 034901
(2014)

Jan Steinheimer 09/20/2016 18 / 33



Different types of phase transitions

@ Important difference: pressure along the transition line.
@ Decides what is the true ground state of matter.

@ True ground state of matter
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J.S., J. Randrup and V. Koch, Phys. Rev. C 89, 034901
(2014)
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Different types of phase transitions

J
(

@ Important difference: pressure along the transition line.

@ Decides what is the true ground state of matter.

T T T T T T
400 B Hadron-Quark EoS
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— ~ ——PQM model x 50
“= 300 " ~0--PQM + o x50
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=
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=, 200 IS S
o) Ry \
5 Nuclear L-Gx50 . / \
7] \
@ 100 o \
Qo L PQM x 50 \
o o \
> \
o B Lml o

o

30 60 0 120
Temperature [MeV]

150 180

.S., J. Randrup and V. Koch, Phys. Rev. C 89, 034901

2014)

Jan Steinheimer

@ True ground state of matter
should be nuclear matter.

@ Use mass-radius neutron star
constraints.

@ Pressure at T'x ~ 50
MeV/fm? which corresponds
to a density of 3pp at 7' = 0.
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Different types of phase transitions

@ Important difference: pressure along the transition line.

@ Decides what is the true ground state of matter.
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J.S., J. Randrup and V. Koch, Phys. Rev. C 89, 034901
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2014)

Jan Steinheimer

True ground state of matter
should be nuclear matter.

Use mass-radius neutron star
constraints.

Pressure at T'x ~ 50
MeV/fm? which corresponds
to a density of 3pp at 7' = 0.

One cannot separate small up
and large up regions.
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Different types of phase transitions

J
(

@ Important difference: pressure along the transition line.

@ Decides what is the true ground state of matter.

400 ' ' ' "W Hadron-Quark EoS 1
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.S., J. Randrup and V. Koch, Phys. Rev. C 89, 034901
2014)

Jan Steinheimer

True ground state of matter
should be nuclear matter.

Use mass-radius neutron star
constraints.

Pressure at T'x ~ 50
MeV/fm? which corresponds
to a density of 3pp at 7' = 0.

One cannot separate small up
and large up regions.

Standard quark based models
usually fail this test.
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An example of effective model

A hadronic part

The parity doublet model: nucleons (hyperons) and their parity partners belong to the
same multiplet and so are true chiral partners.

_|_

A quark+gluon part

Use a simple version of the PNJL model J
Jr

A way to suppress hadrons in the QGP

Use excluded volume J

An effective Q-H model

Work in progress: A. Mukherjee, JS and S. Schramm J
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An example of effective model

@ Good description of the
hadronic high density sector
+ a chiral phase transition.

T, (GP-tiadron) @
e e

T (MeV)
.
5
g
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An example of effective model

@ Good description of the
200 ‘ ‘ T T hadronic high density sector
' + a chiral phase transition.

@ What is the interplay between
the nuclear L-G transition and
the chiral transition?

T (MeV)

0 200 400 600 800 1000 1200
Hy (MeV)
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An example of effective

T (MeV)

Pressure along transition line [MeV/fm ]

00

80

40

——L-G 1st order
----- L-G crossover 7
——H-Q 1st order
----- H-Q crossover

20 40 60 80 100 120 140 160 180
Temperature [MeV]

Jan Steinheimer

model

Good description of the

hadronic high density sector

+ a chiral phase transition.

What is the interplay between
the nuclear L-G transition and

the chiral transition?

Pressure vs. Temperature along

transition lines.

High density: Intermingling
between both transitions.

09/20/2016
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Intermingling between both transitions

Normalized cumulants as function of T and up.

175 175 B / B
X4 XZ
150 150 -4.0
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%100 % 1.0
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501 - - -1 T = 120 El ——1: T,,= 165 N 20
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251 = == Crossover === Crossover
== 1st Order == 1st Order
0 T T T T T 1 25 T T T T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
1, IMeV] 1, MeV]
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Intermingling between both transitions

Normalized cumulants as function of T and up.

175 175 B / B
X4 XZ
150 150 -4.0
1254
1254
%100 % 1.0
= =100
75 -
1T =165 . 75 — l
501 - - -1 T = 120 El ——1: T,,= 165 N 20
i 50 =~ M T=120
251 = == Crossover === Crossover
== 1st Order == 1st Order
0 T T T T T 1 25 T T T T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
1, IMeV] 1, MeV]

@ The nuclear L-G effects are relevant also at larger temperatures!
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Intermingling between both transitions

Normalized cumulants as function of T and up.

175 B, B 175 B, B
%al % Xal %
150 — 150 o
125 -
2 1254
%100 1 é 1.0
= 100
75 -0 .
——1:T,,= 165 . . 75 .
809 - = -1 T =120 -1 2.0

=== Crossover === Crossover
== 1st Order == 1st Order
0 T T T T T 1 25 T T T T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
1, IMeV] 1, MeV]

@ The nuclear L-G effects are relevant also at larger temperatures!

@ A study of the cumulants should never neglect the role of both
transitions
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Intermingling between both transitions

@ When do the fluctuations freeze out?

200 - STAR Preliminary
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Intermingling between both transitions

@ When do the fluctuations freeze out?

@ Beam energy dependence along different freeze out lines.

Xa/X, for Ty;,=120 MeV Xa/X, for Ty, =165 MeV
X3/X, for Tp;,=120 MeV - X3/X, for Tj;,=165 MeV
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Intermingling between both transitions

@ When do the fluctuations freeze out?

@ Beam energy dependence along different freeze out lines.

Xa/X; for Ty;;=120 Mev Xa/X, for T;;,=165 MeV
X3/X; £or Tp;p=120 MeV e X3/X; £or T)in=165 MeV e

R :;7‘“ e
0.5

Susceptibility Ratios
Susceptibility Ratios

10 100 10 100
VSyy (GeV) [Logscale] VSyy (GeV) [Logscale

Of course another freeze out scenario is also possible.

00/20/2016 2233



Whats with the banana shape?

@ An idea was put forward that the normalized cumulants as function of
each other give a characteristic shape.

@ In the presence of two transitions the picture becomes more

Tp;,=120 MeV Ty;,=165 MeV
2.6 2.4
2.4 2.2
2.2 2
5 1.8
o o 1.6
X< 1.8 <
IS <1
< b < 1.2
1.4 N
1.2 0.8
1 0.6
0.8 0.4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Xs/Xz Xs/Xz
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The (Non-)Strange EoS

@ At the beam energies of

5 °F T ]
SIS100/FAIR/BESII strangeness & o i, ]
is severely suppressed/ s " :°j:2 ]
out-of-equilibrium. $ 1
;‘, 10 V=1000 fm*

L

10
Vs (GeV)

A. Andronic et al., Nucl. Phys. A 772, 167 (2006)
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The (Non-)Strange EoS

@ At the beam energies of

SIS100/FAIR/BESII strangeness 1002 00
is severely.s.uppressed/ 80l lgo
out-of-equilibrium. =
. 'c 604 160
@ The fraction of the QGP S
increases with beam energy. g 401 140
Only here can strangeness be < 204 20
sufficiently produced. 0 ‘ 0
2 10 30

Vs [GeV]
J.S. and M. Bleicher, Phys. Rev. C 84, 024905 (2011)

09/20/2016 24 /33



The (Non-)Strange EoS

@ At the beam energies of

SIS100/FAIR/BESII strangeness 1002 3000

is severely.s.uppressed/ 80l lso

out-of-equilibrium. =

. 'c 604 160

@ The fraction of the QGP S

increases with beam energy. £ 407 140

Only here can strangeness be < 204 20

sufficiently produced. o} - Jo
@ Think about strangeness s [GeV]

distillation and iso.spin J.S. and M. Bleicher, Phys. Rev. C 84, 024905 (2011)

distillation.
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Cooper-Frye, the big Poissonizer

How is Cooper-Frye used

dN
EdTp = /Uf(%p)p“dUu

@ Inputs for this equation are the local values of 7', and wu,,.
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Cooper-Frye, the big Poissonizer

How is Cooper-Frye used

dN
E% = /af(a:,p)p“daﬁ

@ Inputs for this equation are the local values of 7', and wu,,.

@ Most state-of-the-art models do a Monte-Carlo sampling for finite
particle numbers.
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@ Most state-of-the-art models do a Monte-Carlo sampling for finite
particle numbers.

@ Global conservation of charges and energy momentum can be
enforced.
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Cooper-Frye, the big Poissonizer

How is Cooper-Frye used

dN
E% = /Jf(x,p)p“daﬂ

Inputs for this equation are the local values of T',ix and u,,.

Most state-of-the-art models do a Monte-Carlo sampling for finite
particle numbers.

Global conservation of charges and energy momentum can be
enforced.

Usually: each cell treated independently, with fllg—]\; << 1.
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Cooper-Frye, the big Poissonizer

How is Cooper-Frye used

dN
E% = /Jf(%p)P“dUu

@ Inputs for this equation are the local values of 7', and wu,,.

@ Most state-of-the-art models do a Monte-Carlo sampling for finite
particle numbers.

@ Global conservation of charges and energy momentum can be
enforced.

@ Usually: each cell treated independently, with é‘% << 1.
@ As a result the particle number locally is always exactly Poissonian.

@ Overall density distribution only recovered in the limit of N — co

09/20/2016 25 /33



Cooper-Frye, the big Poissonizer

How is Cooper-Frye used

dN
E% = /Uf(%p)P“dUu

@ Inputs for this equation are the local values of 7', and wu,,.

@ Most state-of-the-art models do a Monte-Carlo sampling for finite
particle numbers.

@ Global conservation of charges and energy momentum can be
enforced.

Usually: each cell treated independently, with fllg—]\; << 1.
As a result the particle number locally is always exactly Poissonian.

Overall density distribution only recovered in the limit of N — co

Does C.-F. reproduce the moments in coordinate space?
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Cooper-Frye, the big Poissonizer

@ We will use the results of the fluid dynamical simulations with an
unstable phase.

@ The clumping lead to an increase in the scaled variance of th enet
baryon number, in coordinate space.

0.05 T4
[ — Unstable EoS T

[ ---- Maxwell EoS
0.00 Loy Lovus Lovus Lovus Lovu

2 3
Elapsed time t-t, [fm/c]
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Cooper-Frye, the big Poissonizer

@ We will use the results of the fluid dynamical simulations with an

unstable phase.

@ The clumping lead to an increase in the scaled variance of th enet

baryon number, in coordinate space.
@ We employ the standard C-F procedure, conserving baryon number

globally.

0.05
[ — Unstable EoS
[ ---- Maxwell EoS

0.00 Lovv v TP T T 1

2 3
Elapsed time t-t, [fm/c]

Jan Steinheimer

Unstable EoS
02 | —— Maxwell EoS

Baryons: ]

1030 J I U Y U S MU EPU B
00 04 08 12 16 20 24 28 32 36 4.0
z-coordinate [fm]
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Cooper-Frye, the big Poissonizer

L o s e e LA ey

09 ey ]

08 [ Sa ]

o 1 @ Instead of cutting in coordinate

06 - Sl - . .
S5l space, cutting in momentum
Sos 3

0.4 - Baryons: . space

03 [ Maxwell ] i

F o Unstable ] @ Scaled variance becomes

0.2 |- Protons 4

[T el ] C e
01 [22 7 Ureiomie ] indistinguishable
0.0 PR RS N NI B |

00 02 04 06 08 10 12 14
Rapidity window - Ay
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Cooper-Frye, the big Poissonizer

L o s e e LA ey

09 ey ]

08 [ Sa ]

o 1 @ Instead of cutting in coordinate

06 - Sl - . .
S5l space, cutting in momentum
Sos 3

0.4 - Baryons: . space

03 [ Maxwell ] i

F o Unstable ] @ Scaled variance becomes

0.2 |- Protons 4

[T el ] C e
01 [22 7 Ureiomie ] indistinguishable
0.0 PR RS N NI B |

00 02 04 06 08 10 12 14
Rapidity window - Ay

@ Raises the question whether one should use C-F for particle
production in studies related to fluctuations.
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Cooper-Frye, the big Poissonizer

10 - T T T T
09 |- .
08 |- ) . .
o7 - 1 @ Instead of cutting in coordinate
06 |- Seal - - .
s space, cutting in momentum
“o [ ]
0.4 |- Baryons: - Space
03 [ Maxwell ; .
Unstable ] @ Scaled variance becomes
0.2 | Protons -
[T el 1 e e . )
o1 [1ITbe . indistinguishable
0.0 PR P R TR R B
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Rapidity window - Ay

@ Raises the question whether one should use C-F for particle
production in studies related to fluctuations.

@ Can we come up with a better scheme?

@ An event generator that reproduced the desired moments.
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Whats happens after the Cooper-Frye?

The hadronic rescattering J. Steinheimer, V. Vovchenko, J. Aichelin, M. Bleicher and H. Stécker.
arXiv:1608.03737 [nucl-th].
@ The density just after hadronization is still large enough for sufficient
rescatterings to take place.

@ kinetic freeze out # latest point of chemical equilibrium.

200 - STAR Preliminary
150
<)
> T
) L
é 1oop T e TMev) {
L o T (Me I
= o 1 o TK:'(MeV)
5 * T, BES (STAR)
50~ ¢~ # Tg BES (STAR)
- — Andronic et al.

Ll Ll -
2 345 10 20 100 200
NP 7o VAV
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Whats happens after the Cooper-Frye?

The had FOHIC rescatter'ng J. Steinheimer, V. Vovchenko, J. Aichelin, M. Bleicher and H. Stocker.

arXiv:1608.03737 [nucl-th].

@ The density just after hadronization is still large enough for sufficient
rescatterings to take place.

@ kinetic freeze out # latest point of chemical equilibrium.

@ Mainly (pseudo-)elastic scattering and resonance excitations.

Reaction rate dN ., .o/dt [(fm/c) ]

IS
o

w
=

@

o

.
Vs,,=200 GeV N\

—-—- M+M > M*
- - - M+M elastic
M+B -> B*

M+B elastic

o

10 20 30
Total evolution time t [fm/c]

Jan Steinheimer
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Whats happens after the Cooper-Frye?

The hadronic rescattering

@ We know we cannot produce non-Poisson moments with Cooper-Frye.

@ How to then quantify the effect of the hadronic phase?
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Whats happens after the Cooper-Frye?

The hadronic rescattering

@ We know we cannot produce non-Poisson moments with Cooper-Frye.

@ How to then quantify the effect of the hadronic phase?
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Whats happens after the Cooper-Frye?

The hadronic rescattering

@ Beam energy dependence almost flat
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0 - -A- - net-proton UrQMD cascade mode t= 10 fm/c,

o
1)

o

Correlation r,_for the C.-F. hypersurface
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Whats happens after the Cooper-Frye?

The hadronic rescattering

@ Beam energy dependence almost flat

@ Smearing is considerable

Count

1 T T — " 70
r(t=10 fm/c) = 0.5 5= 7.7 GeV, y|<0.5 300
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Whats happens after the Cooper-Frye?

The hadronic resca

@ Beam energy dependence almost flat

@ Smearing is consid

ttering

erable

Count

1 T T
r(t=10 fm/c) = 0.5
r(t=40 fm/c) = 0.99
—~ 1L Gaussian fit, 6=6.5
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2
2
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©
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S
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T
s =7.7 GeV, |yl
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1<0.5

L

20 -10
Change of net-p

@ Survival time of different orders of cumulants?

@ Need for non-Poisson event generator.

Jan Steinheimer
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Deuteron effects

Corrections from nuclei

@ Besides efficiency effects and the no-neutron problem
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Deuteron effects

Corrections from nuclei

Besides efficiency effects and the no-neutron problem
@ Some protons end up as deuterons (or larger nuclei)
@ Effect stronger for small beam energies
°

Essentially like an efficiency, but multiplicity dependent.
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Deuteron effects

Corrections from nuclei
@ Besides efficiency effects and the no-neutron problem
@ Some protons end up as deuterons (or larger nuclei)
@ Effect stronger for small beam energies

@ Essentially like an efficiency, but multiplicity dependent.

Simple coalescence picture
Ad = Bny - np,

The deuteron yield ng in an event with initial proton multiplicity n; then fluctuates
according to a Poisson distribution

—Xq —Bn?
e e °ni
Pyi(naln;) = Ay* = (Bn?)"

nd! nd!
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Deuteron effects

Corrections from nuclei
@ Effect stronger for small beam energies

@ Essentially like an efficiency, but multiplicity dependent.
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Deuteron effects

Corrections from nuclei
@ Effect stronger for small beam energies
@ Essentially like an efficiency, but multiplicity dependent.

@ Results depends on how much proton and neutron number is correlated.
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Summary

@ Extracted fluctuations can be sensitive to many ingredients of models for
relativistic nuclear collisions.
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Summary

@ Extracted fluctuations can be sensitive to many ingredients of models for
relativistic nuclear collisions.

@ Much caution has to be put in the interpretation of data with these models.

@ Considering the usually short-lived attention to certain topics, quick progress
would be important.

@ Are we really going to address these issues or ignore them and move on?

Is it worth the effort? y
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