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Signatures of phase transition and critical point I

Dynamic:
Divergent shear and bulk viscosities at CP. Model H
universality class
η ∝ ξ

1
19 and ζ ∝ ξ2.8, where ξ is correlation length.

Cavitation phenomena?
Divergent heat and charge conductivities λ ∝ ξ18/19.
Possible observable: separation of entropy and
charge clusters.
Spinodal decomposition at 1-st phase transition J.

Randrup 2011; V.S. and D. Voskresensky 2011

Clusters with lower entropy tend to

move along the temperature gradient;

Clusters with higher entropy tend to

move opposite to the temperature

gradient.
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Experimental results from C. Agosta et al J. Low Temp. Phys. 67, 237 (1987). J. Luettmer-Strathmann et al J. Chem. Phys 103, 7482 (1995).
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Signatures of phase transition and critical point II

Static:
O(4) crossover: universal sign structure of higher
order cumulants, χ6

Divergent cumulants of baryon number fluctuations
at CP

χn ∝ ξ
3
( nβγ

2−α −1
)

In vicinity of CP: universal sign structure of
cumulants.
Divergent baryon number susceptibility at
off-equilibrium first order phase transition
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Fluctuations as a probe of phase diagram

Listed predictions for an infinite static medium.
In HIC:

Finite lifetime (S. Mukherjee, R. Venugopalan, Y.
Yin 2015/2016)
Finite size and anisotropy (G. Almasi and V.S.
work in progress)
Conservation laws (A. Bzdak, V. Koch, V.S. 2011)
Fluctuations not related to interesting physics (V.S.,
B. Friman, K. Redlich 2012)
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p is a fraction of measured baryons µ = 0 Rn,m = χn/χm

Modification due to finite life-time:

S. Mukherjee, R. Venugopalan, Y. Yin 2015
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Volume fluctuations: introduction 1

Consider fixed V , where net baryon number B described by P(B,V).
n-th order moments of the net baryon number

〈Bn〉V =

∞∑
B=−∞

BnP(B,V)

Reduced cumulants, corresponding to the net baryon number
fluctuations per unit volume. The first four reduced cumulants are

κ1(T , µ) =
1
V
〈B〉V , κ2(T , µ) =

1
V
〈(δB)2〉V ,

κ3(T , µ) =
1
V
〈(δB)3〉V , κ4(T , µ) =

1
V

[
〈(δB)4〉V − 3〈(δB)2〉V

2
]
,

where δB = B − B̄ and B̄ = 〈B〉V ; κn = T3χn.
κi are, to leading order, independent of volume V .

Formal approach in V.S., B. Friman and K. Redlich, 1205.4756
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Volume fluctuations: introduction 2

V dependence of moments follows
〈B〉V = κ1V , 〈B2〉V = κ2V + κ2

1 V2,

〈B3〉V = κ3V + 3κ2κ1 V2 + κ3
1 V3, 〈B4〉V = κ4V +

(
4κ3κ1 + 3κ2

2

)
V2 + 6κ2κ

2
1 V3 + κ4

1 V4.

The coefficients are from the Bell polynomials.

Now allow for fluctuations of the volume P(V), corresponding
moments 〈Vn〉 =

∫
VnP(V)dV and reduced cumulants of volume

fluctuations, vn.
In presence of volume fluctuations the moments of the net baryon
number are given by

〈Bn〉 =

∫
dV P(V)

∞∑
B=−∞

BnP(B,V) =

∫
dV P(V)〈Bn〉V

Thus cumulants

c1 = κ1, c2 = κ2 + κ2
1v2,

c3 = κ3 + 3κ2κ1v2 + κ3
1v3, c4 = κ4 + (4κ3κ1 + 3κ2

2)v2 + 6κ2κ
2
1v3 + κ4

1v4
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Volume fluctuations: general properties

c1 = κ1, c2 = κ2 + κ2
1v2,

c3 = κ3 + 3κ2κ1v2 + κ3
1v3, c4 = κ4 + (4κ3κ1 + 3κ2

2)v2 + 6κ2κ
2
1v3 + κ4

1v4

v2 ≥ 0{ c2 ≥ κ2

c3 receives contribution from ν3.
For very central events (defined by Nch) ν3 is
negative: volume (or S⊥) has an upper bound
Vmax, while systems with lower volume may
produce large Nch owing to fluctuations.
c3 < κ3 if ν3 < −3ν2κ2/κ

3
1.

At zero µ only cn with n ≥ 4 are modified, i.e. c4 = κ4 + 3κ2
2ν2.

Thus c4 ≥ κ4.
At nonzero µ, c4: competing contributions with opposite signs
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Volume fluctuations: illustrations for ν2

Assumption: V ∝ Npart

Glauber + Negative binomial; Au-Au
√

s = 200
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Centrality binning increases
volume fluctuations and
introduces non-monotonicity

V.S., B. Friman and K. Redlich, 1205.4756

Points: centrality classes from right to left 0-5%, 5-10%, 10-20%, 20-30%, . . .
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Volume fluctuations: illustrations for ν3
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B. Friman, K. Redlich, V.S., work in progress
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Volume fluctuations: illustrations for ν4
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B. Friman, K. Redlich, V.S., work in progress
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Volume fluctuations: energy dependence

Kurtosis: opposite sign contributions may conspire to non-monotonic energy
dependence. More studies are needed.

B. Friman, K. Redlich, V.S., work in progress
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Volume fluctuations: are κn volume independent?

Central assumption: 〈δBn〉 are volume independent.
This is true for large volumes if surface effects can be neglected.
Volume dependence of chiral condensate at T = 0
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Main ingredients:
Functional Renormalization Group +

Quark-meson model
Equilibrium calculations in a box L3

for physical pion mass.

Expectation: cumulants are more sensitive

Gabor Almasi, V.S. to appear soon
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On chiral model

Polyakov-loop extended Quark Meson model

L = ψ̄
[
iγµDµ − g(σ + iγ5τ · π)

]
ψ +

1
2

(∂µσ)2 +
1
2

(∂µπ)2 − U(σ, π) −U(`, `∗)

Mean-field approximation: integrate out fermion fields & disregard
fluctuations of mesonic field, Ω = Ωq − U(σ, π) −U(`, `∗)

Ωq = −
1
V

Tr log
(
iγµDµ − gσ

)
= Ωv + ΩT =

−2Nf Nc

∫
d4p

(2π)4 log(p2 + (gσ)2)

−2TNf

∑
a

∫
d3p

(2π)3 log
(
1 + e−(E−µ)/T+2πiqa/3

)
+ antiq.

Ωv is divergent; this is not a good reason to ignore Ωv

V. S. and B. Friman et al, 1005.3166; R. Pisarski and V. S., 1604.00022
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On chiral model: vacuum term

To extract finite contribution: dimensional regularization

Ωv = −
NcNf

8π2 g4σ4 log
(

gσ
Λdr

)
.

Similar contribution, but for bosons (change of overall sign), first
analyzed by S. Coleman and E. Weinberg in PRD 7, 1888, 1973:
“Fluctuation induced first-order phase transition”

Gross-Neveu model, PRD 10, 3235, 1974: “Dynamical symmetry
breaking in asymptotically free field theories”;
1+1 dimensional NJL model
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On chiral model: close to chiral transition

For mq/T = gσ/T � 1, the expansion of thermal part

ΩT ' NcNf T4

− 7π2

180
+

1
12

m2
q

T2 +
1

8π2

m4
q

T4

[
log

(mq

πT

)
+ γE −

3
4

]
−

7ζ(3)
192π4

m6
q

T6 + O

m8
q

T8




Close to chiral phase transition, thermal part brings

ΩT = +
NcNf

8π2 g4σ4 log
(gσ
πT

)
+ · · ·

Compare to vacuum part

Ωv = −
NcNf

8π2 g4σ4 log
(

gσ
Λdr

)
Exact cancellation of σ4 log(σ) dependence close to transition!

V. S. and B. Friman et al, 1005.3166
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On chiral model: is Ωv important?

Lets neglect Ωv.

Close to chiral transition, ΩT receives contribution σ4 logσ < 0 .

W/o vacuum term, Landau theory

Ω =
1
2

A(T − Tc)σ2 +
1
4

Bσ4 (
1 + C log(σ/σ0)

)
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Shift of transition temperature
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BC
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#2

Most important: first-order phase
transition instead of expected second
order.

V. S. and B. Friman et al, 1005.3166
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On chiral model: is Ωv important?

Lets restore Ωv.
With vacuum term, Landau theory Ω = 1

2 A(T − Tc)σ2 + 1
4 Bσ4
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Ωv appears to be important in chiral limit; but for physical pion mass?!
V. S. and B. Friman et al, 1005.3166
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On chiral model: is Ωv important at mπ?

Crossover for both models
Transition properties are however very different: Lee-Yang zeros in finite
volume, type of singularities in complex chemical potential plane, etc
Baryon number fluctuations, kurtosis, R4,2 = χ4/χ2 = κσ2 :
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On chiral model: is Ωv important at mπ?

Without vacuum term:
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E. Nakano et al, 0907.1344
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On chiral model: is Ωv important at mπ?

C. Herold, M. Nahrgang and Co, e.g. 1601.04839
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Unfortunately these calculations do not include vacuum term. . .
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On chiral model: is Ωv important at mπ?
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Is the PQM model from J. Steinheimer, J. Randrup, V. Koch, PRC 89, 034901, 2014 ?
V. S., QM 2012
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On chiral model: missing vacuum term in literature

Vacuum term was also overlooked in numerous papers
. . .
O. Scavenius, A. Mocsy, I. N. Mishustin and D. H. Rischke, PRC 64, 045202
(2001)
B.-J. Schaefer and J. Wambach, PRD 75, 085015 (2007)
E. S. Bowman and J. I. Kapusta, PRC 79, 015202 (2009)
U. S. Gupta and V. K. Tiwari, arXiv:0911.2464
D. Nickel, PRD 80, 074025 (2009)
T. Kahara and K. Tuominen, PRD 80, 114022 (2009)
J. I. Kapusta and E. S. Bowman, NPA 830, 721C (2009)
. . .
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Volume fluctuations: are κn volume independent?

Central assumption: 〈δBn〉 are volume independent.
This is definitely true for large volumes if surface effects can be
neglected.
Volume dependence of chiral condensate at T = 0
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Main ingredients:
Functional Renormalization Group +

Quark-meson model
Equilibrium calculations in a box L3

for physical pion mass.

Expectation: cumulants are more sensitive

Gabor Almasi, V.S. to appear soon
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Functional renormalization group
The general flow equation for the scale-dependent effective action Γk. Γk: loosely speaking
modes with momenta greater than k are integrated out, k is IR cut-off.

∂kΓk[Φ, ψ] =
1
2

Tr
{
∂kRkB

(
Γ

(2,0)
k [Φ, ψ] + RkB

)−1}
− Tr

{
∂kRkF

(
Γ

(0,2)
k [Φ, ψ] + RkF

)−1
}

The flow equation for the PQM model in infinite volume

∂kΩ(k, ρ ≡
1
2

[σ2 + π2]) =
k4

12π2

{
3

Eπ

[
1 + 2nB(Eπ; T)

]
+

1
Eσ

[
1 + 2nB(Eσ; T)

]
−

4Nf Nc

Eq

[
1 − N(`, `∗; T , µq) − N̄(`, `∗; T , µq)

]}
nB(E; T) is the boson distribution functions
N(`, `∗; T , µq) are fermion distribution function modified owing to coupling to gluons
Eσ and Eπ are the functions of k, ∂Ω/∂ρ and ρ∂2Ω/∂ρ2

Eq =
√

k2 + 2gρ

FRG defines Ω(k, ρ; T , µQ, µB).
Physically relevant quantity is the thermodynamical potential
Ω̄(T , µQ, µB) ≡ Ω(k → 0, ρ→ ρ0; T , µQ, µB), where ρ0 is the minimum of Ω. V.S. et al 1004.2665
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Functional renormalization group: evolution

Scale-dependent effective potential:
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Soft mesonic excitations drive evolution at very small k.
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Functional renormalization group in finite volume

The general flow equation for the effective action

∂kΓk[Φ, ψ] =
1
2

Tr
{
∂kRkB

(
Γ

(2,0)
k [Φ, ψ] + RkB

)−1}
− Tr

{
∂kRkF

(
Γ

(0,2)
k [Φ, ψ] + RkF

)−1
}

The flow equation involve summation over modes
∑

n1 ,n2 ,n3
.

All principal components were considered in 2010, but it was not until 2016 when we
were able to solve the technical issues and the flow equation based on Chebyshev
collocation pseudo spectral lattice.

With parallel realization of code, it takes seconds to compute thermodynamics to very
high precision at a given T and µ.

This become possible due to support of Gabor Almasi by HGS-HIRE and NTG BNL.

Gabor Almasi, V. S. to appear soon
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Results: PQM + FRG in finite model µ = 0

Anisotropy coefficient A = L‖/L⊥
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Gabor Almasi, V. S. to appear soon
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Results: PQM + FRG in finite model µ , 0

Anisotropy coefficient A = L‖/L⊥
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Approximation of volume independence of κn breaks down at about L = 3 − 4 fm: this
makes analysis of volume fluctuations significantly more complicated and tractable
only in a fully dynamical model.

Gabor Almasi, V. S. to appear soon
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Conclusions

Any sourse of fluctuations may strongly affect higher order cumulants
Volume fluctuaions: some properties are model independent, i.e. negative ν3.
In general, vn are non-monotonic functions of centrality and energy
Ratios of cumulants depend on volume for L ∼ 3 fm
Chiral model: the vacuum term should not be omitted.
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Discussion Session
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From hydrodynamics to model H

Navier-Stokes equation, continuity equation, and equation for heat transport:

mn [∂tui + (u∇)ui] = −∇iP + ∇k

[
η

(
∇kui + ∇iuk −

2
d
δikdivu

)
+ ζδikdivu

]
∂tn + div(nu) = 0

T
[
∂s
∂t

+ div(su)
]

= div(κ∇T) + η

(
∇kui + ∇iuk −

2
d
δikdivu

)2

+ ζ(divu)2.

Slowest mode only

Neglect u2.
Neglect longitudinal excitations kiui, which are known to be fast (linearize and
consider small deviations from background, see e.g. 1007.1538)
Specific entropy s̃ = s/n.
Neglect density dynamics; it is also related to sound mode
Relate δT and δP
Add appropriate noise
Consider only small deviatons s̃ = s̃c + δs̃ and expand EoS near s̃c
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From hydrodynamics to model H

Navier-Stokes equation, continuity equation, and equation for heat transport:

mn
[
∂tui + (u∇)ui

]
= −∇iP + ∇k

[
η

(
∇kui + ∇iuk −

2
d
δikdivu

)
+ ζδikdivu

]
∂tn + div(nu) = 0

T
[
∂s
∂t

+ div(su)
]

= div(κ∇T) + η

(
∇kui + ∇iuk −

2
d
δikdivu

)2

+ ζ(divu)2
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From hydrodynamics to model H

Navier-Stokes equation, continuity equation, and equation for heat transport:
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From hydrodynamics to model H

mn∂tui = −∇iP + η∇2ui + θu
i

nT
[
∂s̃
∂t

+ u∇s̃
]

= κ∇2T + θψ

From Hohenberg-Halperin , Rev. of Mod. Phys. 49, 1977:

transverse 
projector

mode-mode coupling

surface tension

EoS EoS

noise

noise

heat transport

Navier-Stokes

Careful analysis in Vasil’ev “The Field Theoretic Renormalization Group in Critical Behavior
Theory and Stochastic Dynamics”
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Volume fluctuations: formal approach

Volume fluctuations is one of effects that
may change cumulants. Higher order
cumulants are most sensitive.

Assumptions
volume fluctuations are not critical
(independent of baryon fluctuations)

P(V ,B) = P(V)P(B)

other thermodynamic quantities do
not fluctuate

The last assumption can be justified at
high energies (µB → 0).
If system thermalizes, the finite
temperature is independent of initial one.

Cumulant generating functions
(CGF) for both fluctuations

CGFB(t) = ln
∞∑

B=−∞

P(B) exp (B t)

CGFV (s) = ln

∞∫
0

dV P(V) exp (Vs)

The additivity of cumulants and
thermodynamic principles imply that

CGFB(t) = V · ζB(t),

where ζB is a volume-independent
function.
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Volume fluctuations

Aim is to obtain cumulants with volume fluctuations. These cumulants are obtained
from the cumulant generating function

φB(t) = ln
∫

dV P(V)
∑

B

P(B)eBt

But ∑
B

P(B)eBt = eVζB(t)

and consequently

φB(t) = ln
∫

dVP(V)eVζB(t)

From comparison with definition of cumulant generating function of volume
fluctuations:

φB(t) = CGFV
(
ζB(t)

)
Corresponding reduced cumulants are given by Taylor expansion of about t = 0

cn =
1
〈V〉

dn

dtn φ
B(t)

∣∣∣∣∣
t=0
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Volume fluctuations: cumulants

Let κn are the cumulants for baryon fluctuations and vn are for volume fluctuations
(δX = X − 〈X〉)

κ1 =
1
V
〈B〉, κ2 =

1
V
〈(δB)2〉, κ4 =

1
V

[
〈(δB)4〉 − 3〈(δB)2〉2

]

v1 =
1
V
〈V〉V , v2 =

1
V
〈(δV)2〉, v4 =

1
V

[
〈(δV)4〉 − 3〈(δV)2〉2

]
Then wanted cumulants of baryon number fluctuations including volume fluctuations
are given by

c1 = κ1

c2 = κ2 + κ1
2v2

c3 = κ3 + 3κ2κ1v2 + κ1
3v3

c4 = κ4 + (4κ3κ1 + 3κ2
2)v2 + 6κ2κ1

2v3 + κ1
4v4

· · ·
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