QCD thermodynamics from fluctuations of conserved charges on the lattice

Sayantan Sharma

October 7, 2016

Bielefeld-BNL-CCNU collaboration

A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, C. Schmidt, S. Sharma, W. Soeldner, P. Steinbrecher, M. Wagner

2 Fluctuations and Equation of state at finite μ_B

3 QCD medium for $T > T_c$ from fluctuations

1 The QCD phase diagram: outstanding issues on lattice

2 Fluctuations and Equation of state at finite μ_B

3 QCD medium for $T > T_c$ from fluctuations

ヨート

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram

• Existence of critical end-point in thermal QCD?

See Frithjof Karsch's talk

- Existence of critical end-point in thermal QCD? See Frithjof Karsch's talk
- Can we observe the criticality at μ_B = 0?

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram

- Existence of critical end-point in thermal QCD?
 See Frithjof Karsch's talk
- Can we observe the criticality at $\mu_B = 0$?
- Calculate χ in thermal QCD → dynamical modeling in rapidity.

See Masakiyo Kitazawa's talk

- Existence of critical end-point in thermal QCD? See Frithjof Karsch's talk
- Can we observe the criticality at μ_B = 0?
- Calculate χ in thermal QCD → dynamical modeling in rapidity.

See Masakiyo Kitazawa's talk

 How to realistically characterize fireball created in Heavy-lon collisions? hydrodynamic evolution → freezeout surface, EoS

[courtesy: www.bnl.gov/news]

Status of Phase diagram

• Need to understand both critical properties and

Status of Phase diagram

- Need to understand both critical properties and
- Understand microscopic degrees of freedom Example: $-3\frac{\chi_{11}^{BS}}{\chi_{2}^{S}}$ [Koch, Majumder, Randrup, 05]

Status of Phase diagram

- Need to understand both critical properties and
- Understand microscopic degrees of freedom Example: $-3\frac{\chi_{11}^{BS}}{\chi_{2}^{S}}$ [Koch, Majumder, Randrup, 05]
- Both LHC and RHIC experiments would enable to explore different parts of the phase diagram.

Basic observables on the lattice

• One of the methods to circumvent sign problem at finite μ : Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T [Bielefeld, Swansea collaboration, 02]

$$\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \frac{1}{2} \left(\frac{\mu_B}{T}\right)^2 \chi_2^B(0, T) + \frac{1}{4!} \left(\frac{\mu_B}{T}\right)^4 \chi_4^B(0) + \dots$$

Basic observables on the lattice

• One of the methods to circumvent sign problem at finite μ : Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T [Bielefeld, Swansea collaboration, 02]

$$\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \frac{1}{2} \left(\frac{\mu_B}{T}\right)^2 \chi_2^B(0, T) + \frac{1}{4!} \left(\frac{\mu_B}{T}\right)^4 \chi_4^B(0) + \dots$$

• The series for χ_2^B should diverge at the critical point. On finite lattice χ_2^B peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai& Gupta, 03]

Basic observables on the lattice

• One of the methods to circumvent sign problem at finite μ : Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T [Bielefeld, Swansea collaboration, 02]

$$\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \frac{1}{2} \left(\frac{\mu_B}{T}\right)^2 \chi_2^B(0, T) + \frac{1}{4!} \left(\frac{\mu_B}{T}\right)^4 \chi_4^B(0) + \dots$$

- The series for χ_2^B should diverge at the critical point. On finite lattice χ_2^B peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai& Gupta, 03]
- Current state of the art: χ_8^B for $N_{\tau} = 8$ pure staggered fermions[Gavai& Gupta, 08]. χ_6^B for $N_{\tau} = 6, 8, 12, 16$ HISQ fermions

[BNL-Bielefeld-CCNU, HotQCD, Budapest-Wuppertal collaborations, 16].

 The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.

- The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

- The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.
- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !

- The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.
- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !
- Extending to higher orders?

- The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.
- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !
- Extending to higher orders?
 - Matrix inversions increasing with the order

- The Baryon no./Charge fluctuations → expressed in terms of Quark no. susceptibilities.
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.
- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !
- Extending to higher orders?
 - Matrix inversions increasing with the order
 - Delicate cancellation between a large number of terms for higher order QNS.

> 《 글 > _ 글

A new method to introduce μ

• The staggered fermion matrix used at finite μ [Hasenfratz, Karsch ,83]

$$D(\mu)_{xy} = \sum_{i=1}^{3} \eta_{i}(x) \left[U_{i}^{\dagger}(y) \delta_{x,y+\hat{i}} - U_{i}(x) \delta_{x,y-\hat{i}} \right] + \eta_{4}(x) \left[e^{\mu a} U_{4}^{\dagger}(y) \delta_{x,y+\hat{4}} - e^{-\mu a} U_{4}(x) \delta_{x,y-\hat{4}} \right]$$

< A >

A new method to introduce μ

• The staggered fermion matrix used at finite μ [Hasenfratz, Karsch ,83]

$$D(\mu)_{xy} = \sum_{i=1}^{3} \eta_{i}(x) \left[U_{i}^{\dagger}(y) \delta_{x,y+\hat{i}} - U_{i}(x) \delta_{x,y-\hat{i}} \right] \\ + \eta_{4}(x) \left[e^{\mu a} U_{4}^{\dagger}(y) \delta_{x,y+\hat{4}} - e^{-\mu a} U_{4}(x) \delta_{x,y-\hat{4}} \right]$$

• One can also add μ coupled to the conserved number density as in the continuum.

$$D(0)_{xy} - rac{\mu a}{2} \eta_4(x) \Big[U_4^{\dagger}(y) \delta_{x,y+\hat{4}} + U_4(x) \delta_{x,y-\hat{4}} \Big] \; .$$

• Linear method:
$$D' = \sum_{x,y} N(x,y)$$
, and $D'' = D''' = D''' \dots = 0$

*ロ> *個> *国> *国>

- Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''' \dots = 0$
- No. of inversions significantly reduced for higher orders in linear method. For 8th order QNS the no. of matrix inversions reduced from 20 to 8. [Gavai & Sharma, 12]

• = •

- Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''' \dots = 0$
- No. of inversions significantly reduced for higher orders in linear method. For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
 [Gavai & Sharma, 12]
- Linear method: χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, [Gavai & Sharma, 15]

A 3 - 5

- Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''' \dots = 0$
- No. of inversions significantly reduced for higher orders in linear method. For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
 [Gavai & Sharma, 12]
- Linear method: χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, [Gavai & Sharma, 15]
- Good news!

The artifacts $\sim \mathcal{O}(a^{n-4}) \rightarrow \text{irrelevant for } n \geq 6.$

マボン イラン イラン

- Linear method: $D' = \sum_{x,y} N(x,y)$, and $D'' = D''' = D''' \dots = 0$
- No. of inversions significantly reduced for higher orders in linear method. For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
 [Gavai & Sharma, 12]
- Linear method: χ_n have additional zero-T artifacts. \rightarrow explicit counter terms needed for $\chi_{2,4}$, [Gavai & Sharma, 15]
- Good news!

The artifacts $\sim \mathcal{O}(a^{n-4}) \rightarrow \text{irrelevant for } n \geq 6.$

In Exp method: counter terms already at the Lagrangian level. We use this method for χ^B_n, n = 2, 4.

(不同) イラト イラト 一戸

• Calculating explicitly the lowest eigenvalues improves performance of the fermion inverter $D^{-1}|R\rangle = \sum_{i=1}^{N} 1/\lambda_i |\psi_i\rangle \langle \psi_i |R\rangle + \text{Explicit Inversion of Dirac Operator.}$

• Efficient codes based on modern computer architectures are being developed. [O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, 14]

A 3 - 10

The QCD phase diagram: outstanding issues on lattice

2 Fluctuations and Equation of state at finite μ_B

3 QCD medium for $T > T_c$ from fluctuations

(4) (E. 1)

Criticality at $\mu_B = 0$

- $m_u, m_d << \Lambda_{QCD}$
- $SU_L(2) \times SU_R(2) \times U_B(1) \times U_A(1)$ is fairly good symmetry
- For $N_f = 2$ light flavors: 2nd order phase transition at $\mu = 0$ with O(4) critical exponent if $U_A(1)$ is not effectively restored at T_c . [Pisarski& Wilczek, 83].
- Growing evidence for O(4) scaling from lattice studies of scaling of chiral condensate and Dirac eigenvalue spectrum.

[BNL-Bielefeld Collaboration, 09,10, BNL-Columbia-LLNL, 13, H. Ohno et. al, 12, V. Dick et. al, 15].

- Verified also in QCD inspired models. [G. Almasi et. al, 16].
- Effects should be visible in higher order fluctuations measured in LHC [Friman, Karsch & Redlich, 11].

イロト 不得 とくほと くほとう ほ

Sixth order quark number fluctuations

• For the first time observe negative dip in χ_6^Q just above $T_c \rightarrow$ signal of O(4) criticality?

Sayantan Sharma

INT Workshop 16-3, Exploring QCD phase diagram

N=6

Constraining EoS for $\mu_5 = \mu_Q = 0$

 In a regime where Hadron Resonance gas is anticipated to be a good description of QCD, including χ^B₆ term already reproduces P(μ_B) within 5% accuracy.

Constraining EoS for $\mu_5 = \mu_Q = 0$

- In a regime where Hadron Resonance gas is anticipated to be a good description of QCD, including χ^B₆ term already reproduces P(μ_B) within 5% accuracy.
- We need to improve the errors on $\chi_6^B \to \text{work}$ in progress.

EoS at finite μ_B for $\mu_S = \mu_Q = 0$

• Pressure for T > 160 MeV already constrained by χ_B^6 for $\mu_B/T \le 2 \rightarrow$ input for hydrodynamic modeling of QGP at finite μ .

[A. Jaiswal, B. Friman, K. Redlich, 15; A. Monnai and B. Schenke, 15]

EoS at finite μ_B for $\mu_S = \mu_Q = 0$

• Pressure for T > 160 MeV already constrained by χ_B^6 for $\mu_B/T \le 2 \rightarrow$ input for hydrodynamic modeling of QGP at finite μ .

[A. Jaiswal, B. Friman, K. Redlich, 15; A. Monnai and B. Schenke, 15]

• Extension to $\mu_B/T \sim 3$ is in progress.

EoS for strangeness neutrality

• In HIC: $n_S = 0$, $\frac{n_Q}{n_B} = 0.4$ mimics Pb-Pb, Au-Au.

. ⊒ →

A (1) > A (1) > A
EoS for strangeness neutrality

- In HIC: $n_5 = 0$, $\frac{n_Q}{n_B} = 0.4$ mimics Pb-Pb, Au-Au.
- The pressure for T < 250 MeV already constrained by χ_B^6 for $\mu_B/T \le 2.5$.

EoS for strangeness neutrality

- In HIC: $n_5 = 0$, $\frac{n_Q}{n_B} = 0.4$ mimics Pb-Pb, Au-Au.
- The pressure for T < 250 MeV already constrained by χ_B^6 for $\mu_B/T \le 2.5$.
- Errors for $\mu_B/T \sim 3$ to be determined by χ_8^B .

Breakdown of HRG at finite μ_B

- Breakdown of HRG+ onset of criticality can be already constrained with χ_6^B .
- Near critical point all terms in the Taylor expansion nearly equal \rightarrow need to improve the errors to observe!
- At CEP: $\chi_n > 0$.

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

[Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

• Other motivation: At low $T, \mu_B = 0$, thermodynamics dominated by pions

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

- Other motivation: At low $T, \mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

- Other motivation: At low T, $\mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions $\propto n_i n_j \sim e^{-(m_i + m_j)/T}$.

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

- Other motivation: At low T, $\mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions $\propto n_i n_i \sim e^{-(m_i + m_j)/T}$.
- Virial expansion can be used to estimate the effect of interactions.

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

[Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- Other motivation: At low T, $\mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions $\propto n_i n_i \sim e^{-(m_i + m_j)/T}$.
- Virial expansion can be used to estimate the effect of interactions.
- Scattering phase shifts from expt used to calculate interaction cross-section.

イロト 不得 トイヨト イヨト 二日

• Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

[Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

- Other motivation: At low T, $\mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions $\propto n_i n_j \sim e^{-(m_i + m_j)/T}$.
- Virial expansion can be used to estimate the effect of interactions.
- Scattering phase shifts from expt used to calculate interaction cross-section.
- HRG a good approximation if resonances not very near to two particle threshold. [Prakash & Venugopalan, 92]

イロト 不得 とくほ とくほ とうほう

 Hadron Resonance Gas model: residual hadron interactions at the freezeout taken into account by considering all known resonances

[Braun-Munzinger, Clevmans, Oeschler, Redlich, 02].

- Other motivation: At low $T, \mu_B = 0$, thermodynamics dominated by pions
- The interaction from 3 loop χPT within 15% of ideal gas results [Gerber & Leutwyler, 89]
- Residual interactions $\propto n_i n_i \sim e^{-(m_i + m_j)/T}$.
- Virial expansion can be used to estimate the effect of interactions.
- Scattering phase shifts from expt used to calculate interaction cross-section.
- HRG a good approximation if resonances not very near to two particle threshold. [Prakash & Venugopalan, 92]
- For light hadrons validity of HRG needs to be checked! For charm it is expected to work. (4) ∃ ≥

• Using Line of constant energy per particle [J. Cleymans et al., 05]. Freezeout curve parameterized as $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.

- Using Line of constant energy per particle [J. Cleymans et al., 05]. Freezeout curve parameterized as $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- With this ansatz comparison of HRG to experiment: $\kappa_2^f = 0.023(3)$.

- Using Line of constant energy per particle [J. Cleymans et al., 05]. Freezeout curve parameterized as $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- With this ansatz comparison of HRG to experiment: $\kappa_2^f = 0.023(3)$.
- To accurately mimic T_f at $\mu_B \rightarrow 0$: $T(\mu_B) - T_{f,0} = e^{-a/\mu_B} \Rightarrow \kappa_2^f \sim 0.$

[A. Andronic, P. Braun-Munzinger, J. Stachel , 06]

- Using Line of constant energy per particle [J. Cleymans et al., 05]. Freezeout curve parameterized as $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- With this ansatz comparison of HRG to experiment: $\kappa_2^f = 0.023(3)$.
- To accurately mimic T_f at $\mu_B \to 0$: $T(\mu_B) - T_{f,0} = e^{-a/\mu_B} \Rightarrow \kappa_2^f \sim 0.$

[A. Andronic, P. Braun-Munzinger, J. Stachel , 06]

• However all phenomenological curves give more weight to low energy collision data.

A 3 - 5

- Using Line of constant energy per particle [J. Cleymans et al., 05]. Freezeout curve parameterized as $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- With this ansatz comparison of HRG to experiment: $\kappa_2^f = 0.023(3)$.
- To accurately mimic T_f at $\mu_B \to 0$: $T(\mu_B) - T_{f,0} = e^{-a/\mu_B} \Rightarrow \kappa_2^f \sim 0.$

[A. Andronic, P. Braun-Munzinger, J. Stachel , 06]

- However all phenomenological curves give more weight to low energy collision data.
- Can we go beyond HRG?

b 4 3 4 5

• Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.

• Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 - \kappa_2^f \mu_B^2 / T_{f,0}^2)$.

• Basic observables
$$\Sigma_r^{QB} = \frac{R_{12}^Q}{R_{12}^B}$$
, $R_{12}^X = \frac{\chi_1^X}{\chi_2^X}$.

- Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- Basic observables $\Sigma_r^{QB} = \frac{R_{12}^0}{R_{12}^B}$, $R_{12}^X = \frac{\chi_1^X}{\chi_2^X}$.

• Expanding the observable about the freezeout surface at $\mu_B = 0, n_Q/n_B = 0.4,$ $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) + \left[\Sigma_r^{QB,2} - \kappa_2^f T_{f,0} \frac{d\Sigma_r^{QB,0}}{dT}|_{T_{f,0}}\right] \frac{\mu_B^2}{T^2}.$

- Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- Basic observables $\Sigma_r^{QB} = \frac{R_{12}^0}{R_{12}^B}$, $R_{12}^X = \frac{\chi_1^X}{\chi_2^X}$.

• Expanding the observable about the freezeout surface at $\mu_B = 0, n_Q/n_B = 0.4,$ $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) + \left[\Sigma_r^{QB,2} - \kappa_2^f T_{f,0} \frac{d\Sigma_r^{QB,0}}{dT} | T_{f,0}\right] \frac{\mu_B^2}{T^2}.$

• Instead from experimental parameterization, get μ_B from the first order Taylor expansion of R_{12}^B as $\mu_B = T \frac{R_{12}^{B,0}}{R_{12}^{B,1}}$.

- Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- Basic observables $\Sigma_r^{QB} = \frac{R_{12}^0}{R_{12}^B}$, $R_{12}^X = \frac{\chi_1^X}{\chi_2^X}$.

• Expanding the observable about the freezeout surface at $\mu_B = 0, n_Q/n_B = 0.4,$ $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) + \left[\Sigma_r^{QB,2} - \kappa_2^f T_{f,0} \frac{d\Sigma_r^{QB,0}}{dT}|_{T_{f,0}}\right] \frac{\mu_B^2}{T^2}.$

• Instead from experimental parameterization, get μ_B from the first order Taylor expansion of R_{12}^B as $\mu_B = T \frac{R_{12}^{B,0}}{R_{21}^{B,1}}$.

• As a result $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) \left[1 + c_{12} \left(R_{12}^B\right)^2\right] + \mathcal{O}\left(R_{12}^B\right)^4$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Freezeout curve at leading order in μ_B : $T = T_{f,0}(1 \kappa_2^f \mu_B^2 / T_{f,0}^2)$.
- Basic observables $\Sigma_r^{QB} = \frac{R_{12}^0}{R_{12}^B}$, $R_{12}^X = \frac{\chi_1^X}{\chi_2^X}$.

• Expanding the observable about the freezeout surface at $\mu_B = 0, n_Q/n_B = 0.4,$ $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) + \left[\Sigma_r^{QB,2} - \kappa_2^f T_{f,0} \frac{d\Sigma_r^{QB,0}}{dT}|_{T_{f,0}}\right] \frac{\mu_B^2}{T^2}.$

- Instead from experimental parameterization, get μ_B from the first order Taylor expansion of R_{12}^B as $\mu_B = T \frac{R_{12}^{B,0}}{R^B,1}$.
- As a result $\Sigma_r^{QB}(\mu_B) = \Sigma_r^{QB}(0) \left[1 + c_{12} \left(R_{12}^B\right)^2\right] + \mathcal{O}\left(R_{12}^B\right)^4$.
- An estimate of Σ_r^{QB} and R_{12}^B from experiments allows us to calculate c_{12} .

[Bielefeld-BNL-CCNU collaboration, 15]

- Caveat: In experiments one measures protons Σ^{Qp}_r, R^p₁₂. Need to understand proton vs baryon number distributions. [Asakawa & Kitazawa, 12]. Within HRG at least R^B₁₂ is mimicked by R^P₁₂ within 10%.
- Additionally take into account also corrections due to finite range of momenta of detected particles.

[Karsch, Morita and Redlich, 15, P Garg et. al., 13, Bzdak & Koch, 12].

• From the 2 independent expressions of Σ_r^{QB} we extract $c_{12}(T_{f,0}, \kappa_2^f) = c_{12}^0(T_{f,0}) - \kappa_2^f D_{12}$.

• This exercise give $T_{f,0} = 147(2)$ MeV consistent with expectation that its at or below T_c . Consistent with recent analysis of ALICE data which gives $T_{f,0} \sim T_c$. [P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, 15] **Curvature:** $\kappa_2^f < -0.012(15) \rightarrow$ near to chiral curvature $\kappa_2^B = 0.0066(7)$. [Bielefeld-BNL-CCNU collaboration, 15] The QCD phase diagram: outstanding issues on lattice

2) Fluctuations and Equation of state at finite μ_B

3 QCD medium for $T > T_c$ from fluctuations

A 34 (b)

• Looking at simpler system \rightarrow charm fluctuations

- $\bullet~$ Looking at simpler system $\rightarrow~$ charm fluctuations
- Deviation from Hard Thermal Loop results between 160 200 MeV

- $\bullet~$ Looking at simpler system $\rightarrow~$ charm fluctuations
- Deviation from Hard Thermal Loop results between 160 200 MeV
- We saw earlier that open charm hadrons melt at T_c . [BI-BNL collaboration, 14]

- Looking at simpler system \rightarrow charm fluctuations
- Deviation from Hard Thermal Loop results between 160 200 MeV
- We saw earlier that open charm hadrons melt at T_c . [BI-BNL collaboration, 14]
- Pressure for broad "resonances" considerably lower than sharp width QP.
 [Biro & Jakovac, 14]

- Looking at simpler system \rightarrow charm fluctuations
- Deviation from Hard Thermal Loop results between 160 200 MeV
- We saw earlier that open charm hadrons melt at T_c . [BI-BNL collaboration, 14]
- Pressure for broad "resonances" considerably lower than sharp width QP.
 [Biro & Jakovac, 14]
- Charm spectral function may have a broad asymmetric peak \rightarrow not a good quasi-particle below 200 MeV.

• Considering charm mesons+baryon+quark-like excitations

$$p_{C}(T, \mu_{B}, \mu_{C}) = p_{M}(T) \cosh\left(\frac{\mu_{C}}{T}\right) + p_{B,C=1}(T) \cosh\left(\frac{\mu_{C} + \mu_{B}}{T}\right) + p_{q}(T) \cosh\left(\frac{\mu_{C} + \mu_{B}/3}{T}\right).$$

- Considering fluctuations upto 4th order we have 2 trivial constraints $\chi_4^C = \chi_2^C$, $\chi_{11}^{BC} = \chi_{13}^{BC}$.
- A more non-trivial constraint: $c_1 \equiv \chi_{13}^{BC} - 4\chi_{22}^{BC} + 3\chi_{31}^{BC} = 0.$

• • = •

Charm d.o.f at deconfinement

- Meson and baryon like excitations survive upto $1.2T_c$.
- Quark-quasiparticles start dominating the pressure beyond $T \gtrsim 200 \text{ MeV} \Rightarrow$ hints of strongly coupled QGP [Mukherjee, Petreczky, SS, 15]

Do diquarks exist beyond T_c ?

- We look specifically at the sector of strange and charm hadrons.
- Upto 4th order derivatives additionally one has 3 more measurements $\chi^{BSC}_{[112]}$

$$p_{SC}(T,\mu_B,\mu_C) = \sum_{j=0}^{1} p_{B,S=j}(T) \cosh\left(\frac{\mu_C + \mu_B - j\mu_S}{T}\right) + p_M(T) \cosh\left(\frac{\mu_C + \mu_S}{T}\right) + p_D(T) \cosh\left(\frac{\mu_C + \mu_B/3 - \mu_S}{T}\right).$$

• Di-quarks carry color quantum number...should disappear when quark d.o.f start dominating around 200 MeV.

Do diquarks exist beyond T_c ?

• $p_D = \chi_{[211]}^{BSC} - \chi_{[112]}^{BSC} = 0$ for our data.

- Strange baryon-like excitations suppressed than meson-like excitations.
- These studies consistent with screening mass of sc-mesons [Y. Maezawa et. al., PRD 2015].

Do diquarks exist beyond T_c ?

 For these calculations to be valid one should satisfy constraint relations → smoothly connect to HRG and free gas at low and high T.

 LQCD data agree with the constraints imposed by our proposed model.

Modeling of heavy quarks in QGP

- Open charm hadrons melt at T_c [BI-BNL collaboration, 14] \Rightarrow freezeout temperature for D_s is now well known Input for heavy flavour transport models [A. Beraudo et. al., 12]
- Additional baryons may contribute to hadronic interactions near the freezeout → can it explain the discrepancy for between flow and suppression for *D* mesons?
- Charm baryon and meson-like excitations surviving in the medium till 1.2 T_c .
- Our study more in favour for resonant scattering of heavy quarks in the medium [M. He, R. J. Fries, R. Rapp, 12].

N 4 B N B

• Fluctuation measurements on lattice has made tremendous progress in last years.

- Fluctuation measurements on lattice has made tremendous progress in last years.
- Imp. for realistic modeling of dynamics of hot fireball in HIC

- Fluctuation measurements on lattice has made tremendous progress in last years.
- Imp. for realistic modeling of dynamics of hot fireball in HIC
- LQCD EoS for $\mu_B/T <= 2 \rightarrow \sqrt{s_{NN}} \ge 20$ GeV already under control.

∃ >

< 🗇 🕨

- Fluctuation measurements on lattice has made tremendous progress in last years.
- Imp. for realistic modeling of dynamics of hot fireball in HIC
- LQCD EoS for $\mu_B/T \ll 2 \rightarrow \sqrt{s_{NN}} \geq 20$ GeV already under control.
- χ_6^B measured with improved precision: progress towards constraining EoS for $\mu_B/T \sim 3$. Analysis of χ_8^B ongoing.