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QCD phase diagram: some outstanding issues

Existence of critical
end-point in thermal QCD?
See Frithjof Karsch’s talk
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QCD phase diagram: some outstanding issues

Existence of critical
end-point in thermal QCD?
See Frithjof Karsch’s talk

Can we observe the
criticality at µB = 0?

Calculate χ in thermal
QCD → dynamical
modeling in rapidity.
See Masakiyo Kitazawa’s talk

How to realistically
characterize fireball created
in Heavy-Ion collisions?
hydrodynamic evolution →
freezeout surface, EoS
[courtesy: www.bnl.gov/news]
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Status of Phase diagram
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Understand microscopic degrees of freedom

Example: −3
χBS
11

χS
2

[Koch, Majumder, Randrup, 05]
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Need to understand both critical properties and

Understand microscopic degrees of freedom

Example: −3
χBS
11

χS
2

[Koch, Majumder, Randrup, 05]

Both LHC and RHIC experiments would enable to explore different
parts of the phase diagram.
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Basic observables on the lattice

One of the methods to circumvent sign problem at finite µ:
Taylor expansion of physical observables around µ = 0 in powers of
µ/T [Bielefeld, Swansea collaboration, 02]
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The series for χB
2 should diverge at the critical point. On finite lattice

χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 6 of 27



Basic observables on the lattice

One of the methods to circumvent sign problem at finite µ:
Taylor expansion of physical observables around µ = 0 in powers of
µ/T [Bielefeld, Swansea collaboration, 02]

P(µB ,T )

T 4
=

P(0,T )

T 4
+

1
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(µB
T

)2
χB
2 (0,T ) +

1

4!

(µB
T

)4
χB
4 (0) + ...

The series for χB
2 should diverge at the critical point. On finite lattice

χB
2 peaks, ratios of Taylor coefficients equal, indep. of volume

[Gavai& Gupta, 03]

Current state of the art:
χB
8 for Nτ = 8 pure staggered fermions[Gavai& Gupta, 08].
χB
6 for Nτ = 6, 8, 12, 16 HISQ fermions

[BNL-Bielefeld-CCNU, HotQCD, Budapest-Wuppertal collaborations, 16].
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Challenges for Lattice computations

The Baryon no./Charge fluctuations → expressed in terms of Quark
no. susceptibilities.
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QNS χij ’s can be written as derivatives of the Dirac operator.

Example :χu
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2〉.

χus
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T
V
〈Tr(D−1

u D
′

uD
−1
s D

′

s)〉.
Higher derivatives → more inversions
Inversion is the most expensive step on the lattice !

Extending to higher orders?

• Matrix inversions increasing with the order
• Delicate cancellation between a large number of terms for higher order

QNS.
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A new method to introduce µ

The staggered fermion matrix used at finite µ [Hasenfratz, Karsch ,83]

D(µ)xy =
3

∑

i=1

ηi (x)
[

U
†
i (y)δx ,y+î

− Ui(x)δx ,y−î

]

+ η4(x)
[

e
µaU

†
4(y)δx ,y+4̂ − e

−µaU4(x)δx ,y−4̂

]
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A new method to introduce µ

The staggered fermion matrix used at finite µ [Hasenfratz, Karsch ,83]

D(µ)xy =
3

∑

i=1

ηi (x)
[

U
†
i (y)δx ,y+î

− Ui(x)δx ,y−î

]

+ η4(x)
[

e
µaU

†
4(y)δx ,y+4̂ − e

−µaU4(x)δx ,y−4̂

]

One can also add µ coupled to the conserved number density as in
the continuum.

D(0)xy −
µa

2
η4(x)

[

U
†
4(y)δx ,y+4̂ + U4(x)δx ,y−4̂

]

.
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Pros and Cons

Linear method: D ′ =
∑

x,y N(x , y), and
D ′′ = D ′′′ = D ′′′′... = 0
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No. of inversions significantly reduced for higher orders in linear method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
[Gavai & Sharma, 12]
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Linear method: χn have additional zero-T artifacts. → explicit counter
terms needed for χ2,4, [Gavai & Sharma, 15]
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Good news!
The artifacts ∼ O(an−4) → irrelevant for n ≥ 6.
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Pros and Cons

Linear method: D ′ =
∑

x,y N(x , y), and
D ′′ = D ′′′ = D ′′′′... = 0

No. of inversions significantly reduced for higher orders in linear method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
[Gavai & Sharma, 12]

Linear method: χn have additional zero-T artifacts. → explicit counter
terms needed for χ2,4, [Gavai & Sharma, 15]

Good news!
The artifacts ∼ O(an−4) → irrelevant for n ≥ 6.

In Exp method: counter terms already at the Lagrangian level. We use this
method for χB

n , n = 2, 4.

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 9 of 27



Recent developments in algorithms

Calculating explicitly the lowest eigenvalues improves performance of the
fermion inverter
D−1|R〉 = ∑N

i=1 1/λi |ψi 〉〈ψi |R〉+Explicit Inversion of Dirac Operator.

Efficient codes based on modern computer architectures are being
developed. [O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, 14]
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Criticality at µB = 0

mu,md << ΛQCD

SUL(2)× SUR(2)× UB(1)× UA(1) is fairly good symmetry

For Nf = 2 light flavors:
2nd order phase transition at µ = 0 with O(4) critical exponent if UA(1) is
not effectively restored at Tc . [Pisarski& Wilczek, 83].

Growing evidence for O(4) scaling from lattice studies of scaling of chiral
condensate and Dirac eigenvalue spectrum.
[BNL-Bielefeld Collaboration, 09,10, BNL-Columbia-LLNL, 13, H. Ohno et. al, 12, V. Dick et. al, 15].

Verified also in QCD inspired models. [G. Almasi et. al, 16].

Effects should be visible in higher order fluctuations measured in LHC
[Friman, Karsch & Redlich, 11].

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 12 of 27



Sixth order quark number fluctuations

For the first time observe negative dip in χQ
6 just above Tc → signal

of O(4) criticality?
[bottom inset plot from Friman, Karsch & Redlich, 11]
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Constraining EoS for µS=µQ=0

In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including χB

6 term already reproduces P(µB) within 5%
accuracy.
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Constraining EoS for µS=µQ=0

In a regime where Hadron Resonance gas is anticipated to be a good
description of QCD, including χB

6 term already reproduces P(µB) within 5%
accuracy.

We need to improve the errors on χB
6 → work in progress.
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EoS at finite µB for µS = µQ = 0

Pressure for T > 160 MeV already constrained by χ6
B for

µB/T ≤ 2 → input for hydrodynamic modeling of QGP at finite µ.
[A. Jaiswal, B. Friman, K. Redlich, 15; A. Monnai and B. Schenke, 15]
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EoS at finite µB for µS = µQ = 0

Pressure for T > 160 MeV already constrained by χ6
B for

µB/T ≤ 2 → input for hydrodynamic modeling of QGP at finite µ.
[A. Jaiswal, B. Friman, K. Redlich, 15; A. Monnai and B. Schenke, 15]

Extension to µB/T ∼ 3 is in progress.
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EoS for strangeness neutrality

In HIC: nS = 0 ,
nQ
nB

= 0.4 mimics Pb-Pb, Au-Au.
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EoS for strangeness neutrality

In HIC: nS = 0 ,
nQ
nB

= 0.4 mimics Pb-Pb, Au-Au.

The pressure for T < 250 MeV already constrained by χ6
B for

µB/T ≤ 2.5.

Errors for µB/T ∼ 3 to be determined by χB
8 .
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Breakdown of HRG at finite µB

Breakdown of HRG+ onset of criticality can be already constrained with χB
6 .

Near critical point all terms in the Taylor expansion nearly equal → need to
improve the errors to observe!

At CEP: χn > 0.
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Can HRG a good approximation for QCD near chemical

freezeout?

Hadron Resonance Gas model: residual hadron interactions at the freezeout
taken into account by considering all known resonances
[ Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].
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threshold. [ Prakash & Venugopalan, 92]
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Can HRG a good approximation for QCD near chemical

freezeout?

Hadron Resonance Gas model: residual hadron interactions at the freezeout
taken into account by considering all known resonances
[ Braun-Munzinger, Cleymans, Oeschler, Redlich, 02].

Other motivation: At low T , µB = 0, thermodynamics dominated by pions

The interaction from 3 loop χPT within 15% of ideal gas results [ Gerber &

Leutwyler, 89]

Residual interactions ∝ ninj ∼ e
−(mi+mj)/T.

Virial expansion can be used to estimate the effect of interactions.

Scattering phase shifts from expt used to calculate interaction cross-section.

HRG a good approximation if resonances not very near to two particle
threshold. [ Prakash & Venugopalan, 92]

For light hadrons validity of HRG needs to be checked! For charm it is
expected to work.
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Characterizing freezeout curve

Using Line of constant energy per particle [J. Cleymans et al., 05].
Freezeout curve parameterized as T = Tf ,0(1− κf2µ

2
B/T

2
f ,0).
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Characterizing freezeout curve

Using Line of constant energy per particle [J. Cleymans et al., 05].
Freezeout curve parameterized as T = Tf ,0(1− κf2µ

2
B/T

2
f ,0).
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Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 19 of 27



Characterizing freezeout curve

Using Line of constant energy per particle [J. Cleymans et al., 05].
Freezeout curve parameterized as T = Tf ,0(1− κf2µ

2
B/T

2
f ,0).

With this ansatz comparison of HRG to experiment: κf2 = 0.023(3).

To accurately mimic Tf at µB → 0:
T (µB)− Tf ,0 = e

−a/µB ⇒ κf
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∼ 0.

[A. Andronic, P. Braun-Munzinger, J. Stachel , 06]
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However all phenomenological curves give more weight to low energy
collision data.
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Characterizing freezeout curve

Using Line of constant energy per particle [J. Cleymans et al., 05].
Freezeout curve parameterized as T = Tf ,0(1− κf2µ

2
B/T

2
f ,0).

With this ansatz comparison of HRG to experiment: κf2 = 0.023(3).

To accurately mimic Tf at µB → 0:
T (µB)− Tf ,0 = e

−a/µB ⇒ κf
2
∼ 0.

[A. Andronic, P. Braun-Munzinger, J. Stachel , 06]

However all phenomenological curves give more weight to low energy
collision data.

Can we go beyond HRG?
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Freezeout curve: exercise from lattice

Freezeout curve at leading order in µB : T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).
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Freezeout curve: exercise from lattice

Freezeout curve at leading order in µB : T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).

Basic observables ΣQB
r =

RQ
12

RB
12

, RX
12 =

χX
1

χX
2
.
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Freezeout curve: exercise from lattice

Freezeout curve at leading order in µB : T = Tf ,0(1− κf2µ
2
B/T

2
f ,0).

Basic observables ΣQB
r =

RQ
12

RB
12

, RX
12 =

χX
1

χX
2
.

Expanding the observable about the freezeout surface at
µB = 0, nQ/nB = 0.4,

ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r

dT
|Tf ,0

]

µ2
B

T 2 .
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Expanding the observable about the freezeout surface at
µB = 0, nQ/nB = 0.4,

ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r

dT
|Tf ,0

]

µ2
B

T 2 .

Instead from experimental parameterization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.
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r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
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]

µ2
B

T 2 .

Instead from experimental parameterization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.

As a result ΣQB
r (µB) = ΣQB

r (0)
[

1 + c12
(

RB
12

)2
]

+O
(

RB
12

)4
.
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Basic observables ΣQB
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µB = 0, nQ/nB = 0.4,

ΣQB
r (µB) = ΣQB

r (0) +
[

ΣQB,2
r − κf2 Tf ,0

dΣQB,0
r
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]

µ2
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T 2 .

Instead from experimental parameterization, get µB from the first

order Taylor expansion of RB
12 as µB = T

R
B,0
12

R
B,1
12

.

As a result ΣQB
r (µB) = ΣQB

r (0)
[

1 + c12
(

RB
12

)2
]

+O
(

RB
12

)4
.

An estimate of ΣQB
r and RB

12 from experiments allows us to calculate
c12.
[ Bielefeld-BNL-CCNU collaboration, 15]
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Caveat: In experiments one measures protons ΣQp
r , Rp

12. Need to
understand proton vs baryon number distributions. [ Asakawa & Kitazawa, 12].
Within HRG at least RB

12 is mimicked by RP
12 within 10%.

Additionally take into account also corrections due to finite range of
momenta of detected particles.
[ Karsch, Morita and Redlich, 15, P Garg et. al., 13, Bzdak & Koch, 12].

From the 2 independent expressions of ΣQB
r we extract

c12(Tf ,0, κ
f
2) = c012(Tf ,0)− κf2D12.
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s1/2NN [GeV]

(MQ/σQ2 )/(MP/σP2 )

(MP/σP2)2

QCD:      (Tf,0, κf2=0)
(Tf,0,κf2=0.02)

STAR: ptmax=2.0 GeV
ptmax=0.8 GeV

PHENIX/STAR2.0
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200 62.4 39 27 19.6 11.5  7.7

This exercise give Tf ,0 = 147(2) MeV consistent with expectation that its at
or below Tc . Consistent with recent analysis of ALICE data which gives
Tf ,0 ∼ Tc . [ P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, 15]

Curvature: κf2 < −0.012(15)→ near to chiral curvature κB2 = 0.0066(7).
[ Bielefeld-BNL-CCNU collaboration, 15]
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Outline

1 The QCD phase diagram: outstanding issues on lattice

2 Fluctuations and Equation of state at finite µB

3 QCD medium for T > Tc from fluctuations
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Looking at simpler system → charm fluctuations

Deviation from Hard Thermal Loop results between 160− 200 MeV

We saw earlier that open charm hadrons melt at Tc . [ BI-BNL collaboration, 14]
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Looking at simpler system → charm fluctuations

Deviation from Hard Thermal Loop results between 160− 200 MeV

We saw earlier that open charm hadrons melt at Tc . [ BI-BNL collaboration, 14]

Pressure for broad “resonances” considerably lower than sharp width QP.
[ Biro & Jakovac, 14]
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Looking at simpler system → charm fluctuations

Deviation from Hard Thermal Loop results between 160− 200 MeV

We saw earlier that open charm hadrons melt at Tc . [ BI-BNL collaboration, 14]

Pressure for broad “resonances” considerably lower than sharp width QP.
[ Biro & Jakovac, 14]

Charm spectral function may have a broad asymmetric peak → not a good
quasi-particle below 200 MeV.

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 23 of 27



Charm d.o.f at deconfinement

Considering charm mesons+baryon+quark-like excitations

pC (T , µB , µC ) = pM(T ) cosh
(µC

T

)

+ pB,C=1(T ) cosh

(

µC + µB

T

)

+

pq(T ) cosh

(

µC + µB/3

T

)

.

Considering fluctuations upto 4th order we have 2 trivial constraints
χC
4 = χC

2 , χBC
11 = χBC

13 .

A more non-trivial constraint:
c1 ≡ χBC

13 − 4χBC
22 + 3χBC

31 = 0.
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Charm d.o.f at deconfinement
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Meson and baryon like excitations survive upto 1.2Tc .

Quark-quasiparticles start dominating the pressure beyond T & 200 MeV ⇒
hints of strongly coupled QGP [Mukherjee, Petreczky, SS, 15]
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Do diquarks exist beyond Tc?

We look specifically at the sector of strange and charm hadrons.

Upto 4th order derivatives additionally one has 3 more measurements
χBSC
[112]

pSC (T , µB , µC ) =

1
∑

j=0

pB,S=j(T ) cosh

(

µC + µB − jµS
T

)

+

pM(T ) cosh

(

µC + µS
T

)

+ pD(T ) cosh

(

µC + µB/3− µS
T

)

.

Di-quarks carry color quantum number...should disappear when quark
d.o.f start dominating around 200 MeV.

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 25 of 27



Do diquarks exist beyond Tc?

pD = χBSC
[211] − χBSC

[112] = 0 for our data.
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Strange baryon-like excitations suppressed than meson-like excitations.

These studies consistent with screening mass of sc-mesons [Y. Maezawa et.

al., PRD 2015].
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Do diquarks exist beyond Tc?

For these calculations to be valid one should satisfy constraint
relations → smoothly connect to HRG and free gas at low and high T.
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LQCD data agree with the constraints imposed by our proposed
model.

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 25 of 27



Modeling of heavy quarks in QGP

Open charm hadrons melt at Tc [ BI-BNL collaboration, 14] ⇒ freezeout
temperature for Ds is now well known
Input for heavy flavour transport models [ A. Beraudo et. al., 12]

Additional baryons may contribute to hadronic interactions near the
freezeout → can it explain the discrepancy for between flow and
suppression for D mesons?

Charm baryon and meson-like excitations surviving in the medium till
1.2 Tc .

Our study more in favour for resonant scattering of heavy quarks in
the medium [ M. He, R. J. Fries, R. Rapp, 12].
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Outlook
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Fluctuation measurements on lattice has made tremendous progress in last
years.

Sayantan Sharma INT Workshop 16-3, Exploring QCD phase diagram Slide 27 of 27



Outlook

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 120  140  160  180  200  220  240  260  280

[P
(T

,µ
B
)-

P
(T

,0
)]

/T
4

T [MeV]

BNL-Bielefeld-CCNU

preliminary

µB/T=2

µB/T=2.5

µB/T=1

NS=0, NQ/NB=0.4

O(µB
6)

O(µB
4)

O(µB
2)

Fluctuation measurements on lattice has made tremendous progress in last
years.

Imp. for realistic modeling of dynamics of hot fireball in HIC
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Fluctuation measurements on lattice has made tremendous progress in last
years.

Imp. for realistic modeling of dynamics of hot fireball in HIC

LQCD EoS for µB/T <= 2 → √
sNN ≥ 20 GeV already under control.
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Fluctuation measurements on lattice has made tremendous progress in last
years.

Imp. for realistic modeling of dynamics of hot fireball in HIC

LQCD EoS for µB/T <= 2 → √
sNN ≥ 20 GeV already under control.

χB
6 measured with improved precision: progress towards constraining EoS for
µB/T ∼ 3. Analysis of χB

8 ongoing.
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