Overview of dilepton physics program at RHIC Electron-positron tomography of hot, dense Medium

> Lijuan Ruan (*Brookhaven National Laboratory*)

a passion for discovery

Traditional Positron-emission Tomography (PET)

Rapp

Electron-positron Tomography

- In our method, we detect electron and positron pairs from quark-antiquark annihilation.
- Electron-positron pairs are penetrating probes and can provide information deep into the system and early time.
- Using electron-positron tomography, we would like to study the symmetry of the Quark-Gluon Plasma.

Microscopic picture:

- quark condensate: left-handed quark and righthanded antiquark attract each other through the exchange of gluons. Generate 99% of visible mass in the universe.
- electron condensate: electrons attract each other through the vibration of the crystal at low temperature. Generate superconductivity in the metal.

ρ and a1 resonance (spectrum function) in vacuum

Spontaneous chiral symmetry breaking: mass distributions are different

Chiral symmetry restoration: mass difference disappears

Is chiral symmetry restored in Quark-Gluon Plasma?

The ρ resonance mass spectrum function

Observable for chiral symmetry restoration:

a broadened ρ spectral function and ultimately the peak structure disappears! Model: Rapp & Wambach, priv. communication **disappears**

Adv. Nucl.Phys. 25, 1 (2000); Phys. Rept. 363, 85 (2002)

RHIC @ Brookhaven National Laboratory BROOKHAVEN

A heavy-ion collision event

The STAR Detector

Solenoidal Tracker at RHIC (1200 tons) **Time Projection Chamber**

- **1. Second largest device of its kind ever built**
- **2. Measure ionization energy loss (dE/dx) and momentum**

197Au + 197Au Collisions at RHIC

Central Event

Particle identification

Electrons are highly contaminated by other particles.

Need new experimental tool to clearly identify electrons!

Particle identification from the Time of Flight Detector

STAR Collaboration, PLB616(2005)8

Hadron identification: proton up to 3 GeV/c, kaon and pion up to 1.6 GeV/c

Electron identification

Combining information from the TPC and TOF, we obtain clean electron samples at $p_T < 3$ GeV/c.

STAR Collaboration, PRL94(2005)062301

The electron-positron tomography tools

The Time of Flight Detector completes the experimental tool for electron-positron tomography: clean electron identification and large acceptance.

BROOKHAVEN

Electron-positron invariant mass distribution

Electron-positron signal: e+e- pairs from light flavor meson and heavy flavor decays (charmonia and open charm correlation): Pseudoscalar meson Dalitz decay: π**⁰ , η, η'** àγ**e+e-Vector meson decays:** ρ**⁰ ,** ω**,** φ à**e+e- ,** ωà π**0 e+e- ,** φà**ηe+e-Heavy flavor decays: J/ψ** \rightarrow **e⁺e⁻ , ccbar** \rightarrow **e⁺e⁻ X, bbbar** \rightarrow **e⁺e⁻ X Drell-Yan contribution**

In Au+Au collisions, we search for QGP thermal radiation at 1.1<Mee<3.0 GeV/c2 (intermediate mass range) Vector meson in-medium modifications at M_{ee}<1.1 GeV/c² (low mass range)

Electron-positron emission mass spectrum

Z. Tang et al. Phys. Rev. C 79, 051901 (2009)

Electron-positron mass spectrum from known hadronic sources without hot, dense medium contribution.

Electron positron emission mass spectrum in 200 GeV Au+Au

Phys. Rev. Lett. 113 (2014) 22301

Significant excess is observed for 0.3<M_{ee}<0.8 GeV/c², representing the hot, dense medium contribution.

Electron positron emission mass spectrum in 200 GeV proton+proton collisions

STAR: QM2014

The cocktail simulation with expected hadronic contributions, is consistent with data in proton+proton collisions.

No hot, dense medium, no excess!

Electron positron emission mass spectrum in 19.6 GeV Au+Au

Significant excess is observed in 0.3<M_{ee}<0.8 GeV/c², representing the hot, dense medium contribution.

Electron-positron emission at lower energies

Low-mass excess is observed for 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions!

The mass distribution from hot, dense medium in 200 GeV Au+Au

Red: a broadened ρ spectrum function Green: vacuum-like spectrum function

Model: Rapp & Wambach, priv. communication Adv. Nucl.Phys. 25, 1 (2000); Phys. Rept. 363, 85 (2002)

Electron-positron emission at lower energies

A broadened ρ spectrum function consistently describes the low mass electron-positron excess for all the energies 19.6-200 GeV.

The ρ resonance spectrum function: broadened BROOKHAVEN

A broadened ρ spectrum function consistently describes the low mass electron-positron excess for all the energies 19.6-200 GeV.

Electron-positron emission versus lifetime

low-mass electron-positron production, normalized by dN_{ch}/dy, is proportional to the life time of the medium from 17.3 to 200 GeV.

The contribution from hot, dense medium

The electron-positron spectrum from hot, dense medium is consistent with a broadened ρ resonance in medium.

The production yield normalized by dN_{ch}/dy is proportional to lifetime of **the medium from 17.3 to 200 GeV. Why?**

The contribution from hot, dense medium from 17.3 to 200 GeV

Low-mass electron-positron emission depends on T, total baryon

density, and lifetime

Coupling to the baryons plays an essential role to the modification of ρ spectral function in the hot, dense medium.

Normalized low-mass electron-positron production, is proportional to the life time of the medium from 17.3 to 200 GeV, given that the total baryon density is nearly a constant and that the emission rate is dominant in the Tc region.

Probe total baryon density effect 7.7 GeV to 19.6 GeV (RHIC beam energy scan II)

Broader and more electron-positron excess down to 7.7 GeV collision energy? ^λ**Beam Energy Scan II provides a unique opportunity to quantify the total baryon density effect on the ρ broadening!**

BROOKHAVEN ONAL LABORATORY

Distinguish the mechanisms of rho broadening

Knowing the mechanism that causes in-medium rho broadening and its temperature and baryon-density dependence is fundamental to our understanding and assessment of chiral symmetry restoration in hot QCD matter !

Beam Energy Scan II in 2019-2020

RHIC is unique to study chiral symmetry restoration:

Beam energy scan II: collision energies 7.7, 9.1, 11.5, 14.5, 19.6 GeV.

Electron cooling from CAD will increase collision rate from 3-10.

World-wide interest

• World interest: SPS, PHENIX, LHC, HADES,FAIR, NICA, KEK

The future electron-positron program

To link electron-positron measurements to chiral symmetry restoration need more precise measurement at μ_B = 0:

- **Lattice QCD calculation is reliable at** $\mu_B = 0$ **.**
- **Theoretical approach: derive the a1(1260) spectral function by using the broadened rho spectral function, QCD and Weinberg sum rules, and inputs from Lattice QCD; to see the degeneracy of the rho and a1 spectral functions (Hohler and Rapp 2014).**

The future electron-positron program

Photon emission

Hot contribution observed in the photon energy spectrum!

Photon emission

Quark-Gluon Plasma emission spectrum: photon energy a few 109 electron volts

Sun emission spectrum: Photon energy a few electron volts.

Hottest matter in the universe: a few trillion degree Celsius!

STAR Collaboration, arXiv: 1607.01447, submitted to PLB.

Electron-positron tomography is enabled by the Time of Flight Detector at STAR.

A broadened ρ spectrum function consistently describes the low mass electron-positron excess in Au+Au collisions for all the energies 19.6, 27, 39, 62.4 and 200 GeV.

Beam Energy Scan II (7.7-19.6 GeV) will provide a unique opportunity to quantify the effect of Chiral Symmetry Restoration via total baryon density effect on the ρ broadening:

structureless mass distribution would form the last piece of evidence of chiral symmetry restoration!

Enable unique measurements of the temperature and lifetime of hot, dense medium

