Lattice QCD Black Hole Engineering Oritical Point Transport Coefficients Freeze-out Line(s) Ocnclusion and Outlook Backup

Equation of state and transport coefficients at finite baryo-chemical potential

Jacquelyn Noronha-Hostler

University of Houston: Israel Portillo, Paolo Parotto, Claudia Ratti University of Sao Paulo: Romulo Rougemont, Renato Critelli, Stefano Finazzo,Jorge Noronha

Exploring the QCD Phase Diagram through Energy Scans, INT October 6th 2016

(日) (日) (日) (日) (日) (日) (日)

Lattice QCD	Black Hole Engineering	Critical Point	Transport Coefficients	Freeze-out Line(s)	Conclusion and Outlook	Backup

Outline

- 2 Black Hole Engineering
- 3 Critical Point
- Transport Coefficients
- 5 Freeze-out Line(s)
- 6 Conclusion and Outlook

7 Backup

Backup

The Success of Lattice QCD

(ロ) (同) (三) (三) (三) (○) (○)

Limitations at Large μ_B (Sign problem)

Black Hole Engineering Critical Point

Lattice QCD

0000

Taylor expand pressure in term of μ_B , limits results for large μ_B

Transport Coefficients Freeze-out Line(s) Conclusion and Outlook

Backup

э

$$\frac{\mathcal{P}(\mu_B)}{T^4} = c_0 + c_2 \left(\frac{\mu_B}{T}\right)^2 + c_4 \left(\frac{\mu_B}{T}\right)^4 + c_6 \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}(\mu_B^8)$$

Lattice QCD Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook Backup

Limitations for transport properties

- Lattice has technical difficulties to compute transport properties
- We're left with a number of models that don't converge...

UNIVERSITY of HOUSTON PHYSICS

350 400

Lattice QCD Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook Backup

Filling in the gaps with Black Hole Engineering

What we need...

- Strongly coupled system
- Non-conformal equation of state
 - Equation of State at large baryon chemical potentials
 - Critical Point
- Perfect fluidity
 - Ability to compute transport coefficients near crossover and at large μ_{B}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

One alternative

Gauge/gravity duality - Black Hole Engineering

Gauge/gravity duality

Maldacena, Gubser, Polyakov, Witten, 1998

Strong coupling limit of QFT in 4 dimensions (with many d.o.f.) \$ String Theory/Classical gravity in d>4 dimensions

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

curved spacetime = (t, x, y, z, r) where *r* is the holographic coordinate

Lattice QCD Black Hole Engineering of tritical Point Transport Coefficients Freeze-out Line(s) Ocnclusion and Outlook Backup

non-conformal Equation of State

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[\mathcal{R} - \frac{1}{2} (\partial_\mu \phi)^2 - \underbrace{V(\phi)}_{\substack{\phi \neq \text{const} \\ (\text{nonconformal})}} - \underbrace{\frac{f(\phi)}{4} F_{\mu\nu}^2}_{\mu_B \neq 0} \right]$$

 \rightarrow non-conformality! Allows for $\zeta/s > 0!$

See also: DeWolfe, Gubser, Rosen PRD83(2011)086005;PRD84(2011)126014 Rougemont et al JHEP1604(2016)102; Rougemont,Noronha,JNH,PRL115(2015)no.20,202301

イロト イポト イヨト イヨト

Lattice QCD Black Hole Engineering Oritical Point Transport Coefficients Freeze-out Line(s) Ococlusion and Outlook Backup

Baryon susceptibilities

Derivatives of the pressure
$$\chi_n^B = \partial^n p / \partial \mu_B^n = \partial^{n-1} \rho / \partial \mu_B^{n-1}$$

ヘロト ヘ回ト ヘヨト ヘヨト

э

R. Rougemont, J. Noronha, JNH, PRL115(2015)no.20,202301

Perfect Fluidity

Shear viscosity to entropy density*

 $\frac{\eta}{s} = \frac{1}{4\pi}$

Kovtun, Son, Starinets, 2005

*The AdS/CFT bound that wasn't:

- Magnetic field violates KSS limit PRD90(2014)no.6,066006
- η/s(T) higher-order derivatives of the action PRD77(2008)126006

UNIVERSITY of HOUSTON PHYSICS

non-conformal EOS needed for bulk viscosity

+13 more Israel-Stewart transport coefficients near Tc S. Finazzo, R. Rougemont, H. Marrochio, J. Noronha,

 Finazzo, R. Rougemont, H. Marrochio, J. Noronha, JHEP 1502 (2015) 051

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Only concerned with the transition region

"Holographic Goldilocks"

Critical Point

Critical Point (T = 90 MeV and $\mu_B = 725$ MeV) emerges naturally from the theory

Equation of State at finite μ_B

Everything at $\mu_B > 0$ is a prediction

Critical behavior very sensitive to $\mu_B = 0$ Lattice QCD input

Strangeness and Electric Charge

- Since $\mu_S < \mu_B$ and $\mu_Q << \mu_B$, assume $\mu_S \sim \mu_B \sim 0$
- Caveat: only valid when μ_S/μ_B and μ_Q/μ_B are small

Viscosity vs. Dynamic Universality Class

No Critical Point

- Calculations possible within HRG, Transport etc
- General ↓ in viscosity as µ_B ↑

Dynamical CP phenomena Review

Hohenberg and Halperin,Rev. Mod. Phys. 49, 435

Critical Point Universality Class H

- 3D Ising Model-Mixing between chiral condensate and baryon density Son and Stephanov PRD70 (2004) 056001
- Divergence
 in viscosity as approaching CP
- See Stephanov and Yin's talks

Critical Point Universality Class B

- Black Hole Engineering
- Currently B conserved, working on S & Q!
- ↓ in viscosity as approaching CP
- Original AdS/CFT CP: Phys.Rev. D78 (2008) 106007

Do we still have perfect fluidity at finite μ_B ?

Transport Coefficients

000000

Black Hole Engineering Critical Point

Lattice QCD

Rougemont, Noronha, JNH, Ratti to appear shortly

UNIVERSITY of HOUSTON PHYSICS

Freeze-out Line(s) Conclusion and Outlook

Backup

Kadam, Mishra Nucl.Phys. A934 (2014) 133-147 See also Denicol, Jeon, Gale, Noronha Phys.Rev. C88 (2013) no.6, 064901

イロト イポト イヨト イヨト

Baryon Transport Coefficients

Lattice QCD Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook Backup cool Coefficients Freeze-out Line(s) Conclusion and Coulor Backup cool Coefficients Freeze-out Line(s) Coefficients Freeze-ou

Greif et al Phys.Rev. D90 (2014) no.9, 094014 (see citations within)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Lattice QCD Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook

Backup

(to appear soon)

Lattice QCD Black Hole Engineering Oritical Point Transport Coefficients ocoo

Vorticity Viscous Coupling (only at $\mu_B = 0$ so far)

Israel-Stewart 2nd order terms:

• Shear coupling terms:

$$-\frac{\lambda_2}{\eta}\pi_{\lambda}^{\langle\nu}\Omega^{\mu\rangle\lambda}$$

 $-\lambda_3 \Omega_\lambda^{\langle\mu} \Omega^{\nu\rangle\lambda}$

• Bulk coupling term:

 $+\lambda_3\Omega_{\mu\nu}\Omega^{\mu\nu}$

In red \rightarrow violates causality Denicol et al Phys.Rev. D85 (2012) 114047; Phys.Rev.

Denicol et al Phys.Rev. D85 (2012) 114047; Phys.Rev. D89 (2014) no.7, 074005; Finazzo et al JHEP 1502 (2015) 051

Vorticity puzzle: including vorticity in hydro while preserving causality? Models beyond hydro?

UNIVERSITY of HOUSTON PHYSICS

(日) (日) (日) (日) (日) (日) (日)

Lattice QCD Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook Backup

What defines the transition region?

- Determine the inflection point of the susceptibilities χ_n^{BSQ} 's across μ_B
- Determine the inflection point of the transport coefficients across μ_B
 - Should the inflection point of transport coefficients match the chemical freeze-out line?

- Susceptibilities compared to experiments: Compare derivatives of the pressure e.g. χ^B₂/χ^B₁ to experimental data
 - All caveats from Claudia Ratti's talk

Susceptibilities in the black hole model

Lattice QCD

Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook

00000

・ロット (雪) (日) (日)

э

Backup

Extraction of the freeze-out line from susceptibilities

Transport Coefficients Freeze-out Line(s) Conclusion and Outlook

00000

Critical Point

Freeze out points $[T - \mu_B]$ are extracted from the line made by the closer points between χ_1/χ_2 and χ_3/χ_2

UNIVERSITY of HOUSTON PHYSICS

Lattice QCD

Black Hole Engineering

Backup

R. Bellwied *et. al.*, Phys. Lett. B **751** (2015) 053

Freezeout Points

Inflection Points: Equilibrium vs. Dynamics

• $T_{c,S}^{eq}(\mu_B) \sim T_{c,S}^{dyn}(\mu_B)$ and $T_{c,Q}^{eq}(\mu_B) \sim T_{c,Q}^{dyn}(\mu_B)$

Lattice QCD

• $T_{c,B}^{eq}(\mu_B)$ decreases with μ_B whereas $T_{c,B}^{dyn}(\mu_B) = const$

Black Hole Engineering Critical Point Transport Coefficients Freeze-out Line(s) Conclusion and Outlook

00000

Backup

Conclusions and Outlook

- Black hole engineering provides a strongly interacting theory, non-conformal EoS that matches lattice, and calculable transport coefficients
- Critical Point arises at T = 90 MeV and μ_B = 725 MeV sensitive to Lattice data at μ_B = 0!
- Near crossover, μ_B ≥ 0, transport coefficients are suppressed compared to conformal field theory
- Freeze-out line compared to experimental data correlated with minimum of c_s²
- Theory work is needed! Inclusion of multiple nonzero chemical potentials