Beam energy dependence of harmonic flow; a probe for the QCD phase Diagram

Roy A. Lacey Stony Brook University

Roy.Lacey@Stonybrook.edu

Quantitative study of the phase diagram for nuclear matter is a central current focus of our field

A Known known → Spectacular achievement: Validation of the crossover transition leading to the QGP → Necessary requirement for CEP

<u>Known unknowns</u>

> Location of the critical End point (CEP)?

- Location of phase coexistence regions?
- Detailed properties of each phase?

All are fundamental to charting the phase diagram

Measurements which span a broad range of the (T, μ_B) -plane are ongoing/slated at RHIC and other facilities

Remarks on the CEP

Requirements for characterization of the CEP!

- ► Its location (T^{cep}, μ_B^{cep}) ?
- > Its static critical exponents v, γ ?
 - ✓ Static universality class?
 - \checkmark Order of the transition
- ➤ Dynamic critical exponent/s z?
 - ✓ Is critical dynamics universal?
 - ✓ Dynamic universality class?

All are required to fully characterize the CEP

✓ A flawless measurement, sensitive to FSE, can <u>Not</u> locate and characterize the CEP directly
 ✓ One solution → exploit FSE

Remarks on the CEP

Finite-Time Effects (FTE)?

 χ_{op} diverges at the CEP

so relaxation of the order parameter could be anomalously slow

Non-linear dynamics → Multiple slow modes

 $z_T \sim 3, \, z_v \sim 2, \, z_s \sim -0.8$

 $z_s < 0$ - Critical speeding up

z > 0 - Critical slowing down

Y. Minami - Phys.Rev. D83 (2011) 094019

An important consequence $\xi \sim \tau^{1/z}$ Significant signal attenuation for short-lived processes with $z_T \sim 3$ or $z_v \sim 2$ eg. $\langle (\delta n) \rangle \sim \xi^2$ (without FTE) $\langle (\delta n) \rangle \sim \tau^{1/z} \ll \xi^2$ (with FTE)

Note that observables driven by the sound mode would <u>NOT</u> be similarly attenuated

FTE could depend on

✓ The specific observable

Associated dynamic critical exponent/s

FTE could also influence FSE

Inconvenient truths:

- Finite-size and finite-time effects complicate the search and characterization of the CEP
 - \checkmark They impose non-negligible constraints on the magnitude of ξ .
- The observation of non-monotonic signatures, while helpful, is neither necessary nor sufficient for identification and characterization of the CEP.
 - ✓ The prevailing practice to associate the onset of non-monotonic signatures with the actual location of the CEP is a ``gimmick".

A Convenient Fact:

The effects of finite size/time lead to specific dependencies which can be leveraged, via scaling, to locate and characterize the CEP

Extraction of the χ scaling function

(b)

Dynamic Finite – Size Scaling

Characterizing the QCD phases

Requirements for characterization of the QCD phases!

Specific shear viscosity?

- \checkmark *T*, μ_B dependence
- Conductivity?

Etc.

Flow measurements provide important constraints

Backdrop

 $\varepsilon_n - \eta/s$ interplay?

Luzum et al. arXiv 0804.4015

<u>Note</u>

The Initial-state eccentricity difference between MC-KLN and MC-Glauber is ~ 20% due to fluctuation differences in the models!

 $\varepsilon_n - \eta/s$ interplay?

η/s is a property of the medium and should not depend on initial geometry! This should <u>NOT</u> be treated as an uncertainty;

Additional specific constraints can be applied?

Backdrop

What is the relevant substructure of the nucleon?
- valence quarks?

Compressibility & Bulk viscosity at the CEP

For an isothermal change

$$VdP = Nd\mu$$
$$N\left(\frac{\partial\mu}{\partial N}\right)_{V,T} = V\left(\frac{\partial P}{\partial N}\right)_{V,T} = \frac{1}{\rho\kappa_{T}}$$

From partition function one can show that

The compressibility diverges at the CEP

At the CEP the inverse compressibility → 0 Scaling function provides an independent handle

Inverse compressibility

The BES at RHIC allows the study of a broad domain of (μ_B, T) – plane.

μ_B & T variations via beam energy or rapidity selections.
 Several systems for geometry and fluctuations

STAR Detector at RHIC

> TPC detector covers $|\eta| < 1$ > FTPC detector covers $2.5 < |\eta| < 4$

Analysis technique

- > All current techniques used to study v_n are related to the correlation function.
- \succ *Two particle correlation function* $C(\Delta \varphi = \varphi_1 \varphi_2)$ used in this analysis,

$$C(\Delta \varphi) = \frac{dN/d\Delta \varphi(same)}{dN/d\Delta \varphi(mix)} \quad and \quad v_n^2 = \frac{\sum_{\Delta \varphi} C(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C(\Delta \varphi)}$$

$$v_n(pT) = \frac{v_n^2(p_{T_{ref}}, p_T)}{\sqrt{v_n^2(p_{T_{ref}})}}$$

$$PLB 708, 249 (2012)$$

$$2$$

- ✓ Factorization ansatz for v_n verified.
- ✓ Non-flow signals, as well as some residual detector effects (track merging/splitting) minimized with $|\Delta \eta = \eta_1 \eta_2| > 0.7$ cut.

 $\boldsymbol{v_n(p_T)}$ $|\eta| < 1 \text{ and } |\Delta \eta| > 0.7$

 $\succ v_n(p_T)$ indicate a similar trend for different beam energies.

 $\succ v_n(p_T)$ decreases with harmonic order n.

 $\succ v_n(p_T)$ indicate a similar trend for different beam energies. $\succ v_n(p_T)$ decreases with harmonic order n.

 v_n (Cent) $|\eta| < 1$ and $|\Delta \eta| > 0.7$ $0.2 < p_T < 4$ GeV/c

 \succ v_n (*Cent*) indicate a similar trend for different beam energies.

 \succ v_n (*Cent*) decreases with harmonic order n.

Roy A. Lacey, INT Workshop

 v_n (Cent) $|\eta| < 1$ and $|\Delta \eta| > 0.7$ $0.2 < p_T < 4$ GeV/c

 \succ v_n (*Cent*) indicate a similar trend for different beam energies.

 $\succ v_n$ (Cent) decreases with harmonic order n.

Roy A. Lacey, INT Workshop

 $\succ Mid and forward rapidity v_n(\eta) decreases with harmonic order n.$

> Mid rapidity $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam energy. > $v_n(\sqrt{s_{NN}})$ decreases with harmonic order n.

 $v_2(\sqrt{S_{NN}})$ TPC and FTPC $0.2 < p_T < 4$ GeV/c

What indications do we have for the flow constraints?

Expansion Dynamics

Flow is acoustic

n=2 n=3 n=4 $\frac{dN}{d\phi} \propto \left(1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n\left(\phi - \Psi_n\right)\right]\right)$ Acoustic viscous modulation of v_n $\delta T_{\mu\nu}(t,k) = \exp\left(-\frac{2}{3}\frac{\eta}{s}k^2\frac{t}{T}\right)\delta T_{\mu\nu}(0)$ $t \propto \overline{R}$ k = n / RStaig & Shuryak arXiv:1008.3139

Scaling expectations:

n² dependence

The factors which influence anisotropic flow – well understood

Roy A. Lacey, INT Workshop 26

Initial Geometry characterized by many shape harmonics $(\varepsilon_n) \rightarrow drive v_n$

✓ Characteristic 1/R viscous damping validated with n²
 dependence at RHIC & the LHC
 ✓ Important constraint for η/s

- Eccentricity change alone is not sufficient
- ✓ Characteristic 1/(RT) viscous damping validated
- ✓ Similar patterns for other p_T selections ✓ Important constraint for η /s & ζ/s

 $\ln(v_2/\epsilon_2)$

Acoustic Scaling – RT

Characteristic 1/(RT) viscous damping validated
 Important constraint for η/s & ζ/s

 V_{n}

RT

chg

ln

 $RT \propto$

✓ Combined scaling understood

- ✓ Characteristic n² viscous damping validated
- ✓ Similar patterns for other centrality selections
- \checkmark Important constraint for η /s & ζ/s

> The viscous coefficient ξ shows a non-monotonic behavior with beam energy

Extraction of η/s

hydrodynamics; calibration $\rightarrow 4\pi\eta/s \sim 1.3 \pm 0.2$ Extracted n/s value insensitive to initial conditions

There is a wealth of data which can be leveraged to constrain the extraction of initial-state independent transport coefficients

33

End

Viscous coefficient

The v_n measurement are sensitive to ε_n , transport coefficient η/s and the expanding parameter RT.

Acoustic ansatz

✓ Sound attenuation in the viscous matter reduces the magnitude of v_n .

Reasonable agreement between the STAR and PHOBOS measurements.

Further scaling validation over full range of $\sqrt{s_{NN}}$ for p+p \checkmark Similar $\sqrt{s_{NN}}$ trend for quark and nucleon scaled multiplicity density

Scaling validated for p+A & A+A(B) systems

- ✓ Similar patterns for A+A(B) systems at the same $\sqrt{s_{NN}}$.
- Logarithmic dependence of $\langle p_T \rangle$ on multiplicity