Beam energy dependence of harmonic flow; a probe for the QCD phase Diagram

Roy A. Lacey **Stony Brook University**

Roy.Lacey@Stonybrook.edu

Quantitative study of the phase diagram for nuclear matter is a central current focus of our field

A Known known Spectacular achievement: Validation of the crossover transition leading to the QGP Necessary requirement for CEP

Known unknowns

Location of the critical End point (CEP)?

- **Location of phase coexistence regions?**
- **Detailed properties of each phase?**

All are fundamental to charting the phase diagram

Measurements which span a broad range of the (T, μ_B) *-plane are ongoing/slated at RHIC and other facilities*

Remarks on the CEP

Requirements for characterization of the CEP!

- \triangleright Its location (T^{cep} , μ_B^{cep})?
- \triangleright Its static critical exponents ν, γ ?
	- *Static universality class?*
	- *Order of the transition*
- *Dynamic critical exponent/s – z?*
	- *Is critical dynamics universal?*
	- *Dynamic universality class?*

All are required to fully characterize the CEP

 A flawless measurement, sensitive to FSE, can **Not** *locate and characterize the CEP directly One solution exploit FSE*

Roy A. Lacey, INT Workshop

Finite-Time Effects (FTE)?

 χ_{op} diverges at the CEP

so relaxation of the order parameter could be anomalously slow

Non-linear dynamics Multiple slow modes

z^T ~ 3, z^v ~ 2, z^s ~ -0.8

z^s < 0 - Critical speeding up *z > 0 - Critical slowing down*

Y. Minami - **Phys.Rev. D83 (2011) 094019**

critical exponent **An important consequence** $\xi \sim \tau^{1/z}$ *Significant signal attenuation for short-lived processes with* $z_T \sim 3$ or $z_V \sim 2$ *eg.* $\langle (\delta n) \rangle \sim \xi^2$ (without FTE) $|\delta n\rangle$ ~ $\tau^{1/z} \ll \xi^2$ (with FTE)

****Note that observables driven by the sound mode would NOT be similarly attenuated****

FTE could depend on

- *The specific observable*
	- *Associated dynamic critical exponent/s*

FTE could also influence FSE

Inconvenient truths:

- *Finite-size and finite-time effects complicate the search and characterization of the CEP*
	- *They impose non-negligible constraints on the magnitude of ξ.*
- *The observation of non-monotonic signatures, while helpful, is neither necessary nor sufficient for identification and characterization of the CEP.*
	- *The prevailing practice to associate the onset of non-monotonic signatures with the actual location of the CEP is a ``gimmick'' .*

A Convenient Fact:

 The effects of finite size/time lead to specific dependencies which can be leveraged, via scaling, to locate and characterize the CEP

Extraction of the χ scaling function

3

2

12

Dynamic Finite – Size Scaling

Characterizing the QCD phases

Requirements for characterization of the QCD phases!

Specific shear viscosity?

- *T, μB dependence*
- *Specific bulk viscosity? √ T*, μ_{*B*} *dependence*
- *Conductivity?*

Etc.

Flow measurements provide important constraints

Backdrop

εⁿ – η/s interplay?

Note

Status Quo

The Initial-state eccentricity difference between MC-KLN and MC-Glauber is ~ 20% due to fluctuation differences in the models!

εⁿ – η/s interplay?

η/s is a property of the medium and should not depend on initial geometry! This should NOT be treated as an uncertainty;

Additional specific constraints can be applied?

 What is the relevant substructure of the nucleon? - valence quarks?

Compressibility & Bulk viscosity at the CEP

For an isothermal change

$$
mpressibility & Bulk viscosity at the\nFor an isothermal change\n
$$
\frac{VdP = Nd\mu}{N\left(\frac{\partial \mu}{\partial N}\right)_{V,T}} = V\left(\frac{\partial P}{\partial N}\right)_{V,T} = \frac{1}{\rho\kappa_T}
$$
\nin partition function one can show that

\n
$$
\frac{1}{\langle N \rangle} \left(\frac{\partial \langle N \rangle}{\partial \beta \mu}\right) = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}
$$
$$

From partition function one can show that

The compressibility diverges at the CEP

At the CEP the inverse compressibility \rightarrow 0 **Scaling function provides an independent handle**

Inverse compressibility

The BES at RHIC allows the study of a broad domain of (μ_B, T) – plane.

 & *T variations via beam energy or rapidity selections. Several systems for geometry and fluctuations*

STAR Detector at RHIC

 \triangleright *TPC detector covers |* η *| < 1* $FTPC$ detector covers $2.5 < |\eta| < 4$

Analysis technique

- \triangleright All current techniques used to study v_n are related to the correlation function.
- \triangleright *Two particle correlation function* $C(\Delta \varphi = \varphi_1 \varphi_2)$ used in this analysis,

$$
C(\Delta \varphi) = \frac{dN/d\Delta \varphi(same)}{dN/d\Delta \varphi(mix)} \quad and \quad v_n^2 = \frac{\sum_{\Delta \varphi} C(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C(\Delta \varphi)}
$$

- \checkmark *Factorization ansatz for* v_n *verified.*
- *Non-flow signals, as well as some residual detector effects (track* $merging/splitting)$ minimized with $|\Delta \eta = \eta_1 - \eta_2| > 0$. 7 cut.

Results

 $v_n(p_T)$ $|\eta|$ < 1 and $|\Delta \eta|$ > 0.7

 $\triangleright v_n(p_T)$ indicate a similar trend for different beam energies.

 $\triangleright v_n(p_T)$ decreases with harmonic order n.

Results

 $\triangleright v_n(p_T)$ indicate a similar trend for different beam energies. $\triangleright v_n(p_T)$ decreases with harmonic order n.

 v_n (Cent) $|\eta|$ < 1 and $|\Delta \eta|$ > 0.7 $0.2 < p_T < 4 \text{GeV/c}$

 \triangleright v_n (*Cent*) indicate a similar trend for different beam energies.

 \triangleright v_n (*Cent*) decreases with harmonic order n.

Roy A. Lacey, INT Workshop

Results

 v_n (Cent) $|\eta|$ < 1 and $|\Delta \eta|$ > 0.7 $0.2 < p_T < 4$ GeV/c

 \triangleright v_n (*Cent*) indicate a similar trend for different beam energies.

 \triangleright v_n (*Cent*) decreases with harmonic order n.

Roy A. Lacey, INT Workshop

 \triangleright Mid and forward rapidity $v_n(\eta)$ decreases with harmonic *order n.*

Results

 \triangleright *Mid rapidity* $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam energy. φ $v_n(\sqrt{s_{NN}})$ decreases with harmonic order *n*.

Results

 $v_2(\sqrt{s_{NN}})$ TPC and FTPC $0.2 < p_T < 4$ GeV/c

What indications do we have for the flow constraints?

Expansion Dynamics

Flow is acoustic

Acoustic viscous modulation of vⁿ

$$
\delta T_{\mu\nu}(t,k) = \exp\left(-\frac{2\eta}{3}\frac{\eta}{s}k^2\frac{t}{T}\right)\delta T_{\mu\nu}(0)
$$

Staig & Shuryak **arXiv:1008.3139**

Scaling expectations:

n² dependence

 $n \neq 1$ v_n $-\beta''$ *RT* β'' | \mathcal{E} | KI| *dependence*

The factors which influence anisotropic flow – well understood

Initial Geometry characterized by many shape harmonics (εⁿ) drive vⁿ

 \checkmark Characteristic $1/\overline{R}$ viscous damping validated with n² **dependence at RHIC & the LHC** *Important constraint for η/s*

- **Characteristic 1/(RT) viscous damping validated** \checkmark Similar patterns for other p_T selections
- *V* Important constraint for $η$ /s & $ζ$ /s

 Characteristic 1/(RT) viscous damping validated *Important constraint for* η */s &* ζ/s

 $\ln\left|\frac{v_n}{\sqrt{n}}\right| \propto \frac{P}{\sqrt{n}}$

 $RT \propto$

 v_n $\overline{\smash{\big)}\,}$ $\overline{\smash{\big)}\,}$ $\overline{\smash{\big)}\,}$

d

 \checkmark Combined scaling understood

- **Characteristic n²viscous damping validated**
- **Similar patterns for other centrality selections**
- *V* Important constraint for $η$ /s & $ζ$ /s

 \triangleright The viscous coefficient ξ shows a non-monotonic behavior *with beam energy*

*Slope sensitive to 4*π*η/s*

Characteristic 1/R viscous damping validated in viscous **hydrodynamics; calibration** \rightarrow **4π***η/s* **~ 1.3** \pm **0.2** *Extracted η/s value insensitive to initial conditions*

There is a wealth of data which can be leveraged to constrain the extraction of initial-state independent transport coefficients

End

Viscous coefficient

The v_n measurement are sensitive to ε_n , transport coefficient η/s and the *expanding parameter .*

Acoustic ansatz

Sound attenuation in the viscous matter reduces the magnitude of v_n .

Reasonable agreement between the STAR and PHOBOS measurements.

Further scaling validation over full range of $\sqrt{s_{NN}}$ *for p+p* \checkmark Similar $\sqrt{s_{NN}}$ trend for quark and nucleon scaled multiplicity **density**

Scaling validated for p+A & A+A(B) systems

- Similar patterns for A+A(B) systems at the same $\sqrt{s_{NN}}$.
- \checkmark Logarithmic dependence of $\langle p_T \rangle$ on multiplicity