Exploring the QCD Phase Diagram through Energy Scans

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Frithjof Karsch

Bielefeld University & Brookhaven National Laboratory

Universität Bielefeld

- Taylor expansion of the equation of state
- characterization of bulk thermodynamics and fluctuations of conserved charges in the crossover region: QCD versus HRG
- constraining the location of the critical point

skewness and kurtosis from QCD and BES&RHIC

Lattice results on the QCD critical point

Where is the critical point?

Generic expansion coefficients

similar in PNJL model: S. Roessner et al, PR D75 (2007) 034007; seminar by Magner - p. 17/35

QCD phase diagram and the beam energy scan (BES) at RHIC

estimates of the baryon chemical potentials at beam energies used in the BES@RHIC

based on comparison of data on particle yields with HRG model calculations

most relevant for current experiments is to reach knowledge on the EoS for

 $0 \leq \mu_B/T \leq 3$

 $(T \simeq T_c \simeq 155 \text{ MeV})$

Probing the properties of matter through the analysis of conserved charge fluctuations

Taylor expansion of the QCD pressure:
$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(T, V, \mu_B, \mu_Q, \mu_S)$$
$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. \frac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\mu_{B,Q,S}=0} \quad , \quad \hat{\mu}_X \equiv \frac{\mu_X}{T}$$

the pressure in hadron resonance gas (HRG) models:

$$\frac{p}{T^4} = \sum_{m \in meson} \ln Z_m^b(T, V, \mu) + \sum_{m \in baryon} \ln Z_m^f(T, V, \mu)$$
$$\sim e^{-m_H/T} e^{(B\mu_B + S\mu_S + Q\mu_Q)/T}$$

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

Equation of State and BES II in 2019/20

300

 aim at statistically significant predictions in the entire parameter range covered by BES II:

– need to improve 6th order correction

250 Quark-Gluon Plasma Temperature (MeV) 200 BES-JJ der Phase Transition 150 Critica 100 Point? Color 50 Nuclear Superconductor Vacuum Matter 0 800 1000 1400 1200 200 400 600 1600

Baryon Chemical Potential - μ_B (MeV)

current accuracy

BI-BNL-CCNU, in preparation

in future we need to do better

Probing the properties of matter through the analysis of conserved charge fluctuations

Where is the critical point?

I) need to understand the thermodynamics in the crossover region

RHIC Beam Energy Scan- I (2010-2014)

1)Access broad region of the QCD phase diagram.

2)STAR: Large and homogeneous acceptance, excellent PID capabilities.

STAR is a unique detector with huge discovery potential in exploring the QCD phase structure at high baryon density.

Particle yields, hadron resonance gas and freeze-out conditions

the pressure in hadron resonance gas (**HRG**) models:

F. Karsch, INT workshop 2016 10

Crossover transition parameters

A. Bazavov et al. (hotQCD) , Phys. Rev. D90 (2014) 094503

Crossover transition parameters

Lines of constant physics and freeze-out

HRG vs. QCD baryon number – electric charge correlations

- nothing dramatic happens when passing through the "transition" region ?
- change in composition of the thermal medium is detected through conserved charge correlations

HRG vs. QCD electric charge-baryon number correlations

$$\left(\frac{\mu_B/T > 0}{\chi_{11}^{BQ}(T,\mu_B)} = \chi_{11}^{BQ} + \frac{1}{2}\chi_{31}^{BQ}\left(\frac{\mu_B}{T}\right)^2 + \mathcal{O}(\mu_B^4)$$

– agreement between HRG and QCD will start to deteriorate for T>150 MeV

0

HRG vs. QCD strangeness-baryon number correlations

continuum extrapolated results on strangeness-baryon correlations **do NOT agree** with a conventional hadron resonance gas, based on experimentally known resonances listed in the particle data tables in the crossover region (and above): PDG-HRG \neq QCD QM-HRG does better

Analyzing strangeness carrier with higher order cumulants

HRG vs. QCD strangeness-baryon number correlations

Strangeness vs. baryon chemical potential the influence of additional strange hadrons –

enhanced

strangeness-baryon correlation over strangeness fluctuations

strangeness neutrality

enforces relation between chemical potentials

$$\langle n_{S}
angle = 0$$

= $\chi_{2}^{S} \hat{\mu}_{S}^{2} + \chi_{11}^{BS} \hat{\mu}_{S} \hat{\mu}_{B} + \mathcal{O}(\mu^{4})$
 $\frac{\mu_{S}}{\mu_{B}} = -\frac{\chi_{11}^{BS}}{\chi_{2}^{S}} + \mathcal{O}(\mu^{2})$

HRG provides good guidance for thermal conditions at freeze-out. However,

HRG is not QCD

we need a self-consistent determination of freeze-out parameters based on QCD

Strange hadron yields in HIC Impact on determination of freeze-out parameter

temperature for strange hadrons

Constraining the location of the critical point

Finite-size scaling and cumulants of conserved charge fluctuations

free energy density: $f(T,\mu_B,L)=f_s(t,h,L)+f_r(T,\mu_B,L)$, $V=L^3$

reduced temperature and external field variables: (t,h)

$$t = rac{1}{t_0} \left[(T - T_c) + A(\mu - \mu_c)
ight]$$
 $h = rac{1}{h_0} \left[(T - T_c) + B(\mu - \mu_c)
ight]$

singular part of the free energy, RG arguments:

G arguments:
$$f_s = b^{-3} f(b^{y_t}t, b^{y_h}h, bL^{-1})$$

 $b = L \Rightarrow f_s = L^{-3} f(L^{y_t}t, L^{y_h}h, 1)$

$$egin{aligned} y_t &= 1/
u \;\;,\;\; y_h &= eta \delta/
u \ y_h &> y_t \end{aligned}$$

finite size scaling of cumulants

$$\chi_n^B = \frac{\mathrm{d}^n f_s}{\mathrm{d} \mu_B^n} \sim \frac{\partial^n f_s}{\partial h^n} \sim L^{-3 + n \delta \beta / \nu} f_s^{(n)}(\ldots)$$

Finite-size scaling and cumulants of conserved charge fluctuations

Finite-size scaling and cumulants of conserved charge fluctuations

R. Lacey et al., arXiv: 1606.08071

LGT attempts to find the critical point

since 10 years no progress along this line

Complex Langevin vs. Reweighting – the silent death of the Fodor/Katz critical point ? –

i.e.

Z. Fodor, S. Katz. D Sexty, C. Torok, Phys. Rev. D 92 (2015) 094516 from Conclusion:

...reweighting from zero μ breaks down because of the overlap and sign problems around

$$rac{\mu}{T}=1-1.5$$
 $rac{\mu_B}{T}=3-4.5$

this should be compared to the first Fodor/Katz critical point estimate on lattices with comparable parameters:

$$rac{\mu_B^{crit}}{T}=4.5(3)$$

Z. Fodor, S. Katz. JHEP 0203 (2002) 014

(calculations with physical quark masses eventually lead to a twice smaller estimate for the critical chemical potential)

Taylor expansion of the pressure and critical point

$$rac{P}{T^4} = \sum_{n=0}^{\infty} rac{1}{n!} \chi^B_n(T) \left(rac{\mu_B}{T}
ight)^n$$

for simplicity : $\mu_Q=\mu_S=0$

estimator for the radius of convergence:

$$\left(rac{\mu_B}{T}
ight)_{crit,n}^{\chi}\equiv r_n^{\chi}=\sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

 radius of convergence corresponds to a critical point only, iff

 $\chi_n > 0 ext{ for all } n \geq n_0$

forces P/T^4 and $\chi^B_n(T,\mu_B)$ to be monotonically growing with μ_B/T

at T_{CP} : $\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} > 1$

if not:

- radius of convergence does not determine
 the critical point
- Taylor expansion can not be used close to the critical point

Estimates of the radius of convergence

estimates/constraints on critical point location

05/30/16: based on ongoing calculations of 6th order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration FK, CPOD 2016

estimates/constraints on critical point location

ruled out from QCD thermodynamics at $\mu_B=0$

05/30/16: based on ongoing calculations of 6th order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration FK, CPOD 2016

Exploring the QCD phase diagram

More moderate questions:

- Can we understand the systematics seen in cumulants of charge fluctuations in terms of QCD thermodynamics ?
- How far do we get with low order Taylor expansions of QCD in explaining the obvious deviations from HRG model behavior ?

• For $\sqrt{s} \geq 20~{
m GeV}$:

Structure of (net-electric charge and) net-proton cumulants is inconsistent with HRG thermodynamics, but can eventually be understood in terms of QCD thermodynamics in a next-to-leading order Taylor expansion

Mean baryon number over variance of baryon number fluctuation

$$R_{12}^{B}(T,\mu_{B}) \equiv \frac{M_{B}}{\sigma_{B}^{2}} = \frac{\chi_{1}^{B}(T,\mu_{B})}{\chi_{2}^{B}(T,\mu_{B})} = r_{12}^{B,1}\hat{\mu}_{B} + \mathcal{O}(\mu_{B}^{3})$$

$$r_{12}^{B,1} = \frac{\chi_{2}^{B} + s_{1}\chi_{11}^{BS} + q_{1}\chi_{11}^{BQ}}{\chi_{2}^{B}}$$
fixed through
$$\mu_{S} = s_{1}\mu_{B} + \mathcal{O}(\mu_{B}^{3}) \quad M_{S} = 0$$

$$\mu_{Q} = q_{1}\mu_{B} + \mathcal{O}(\mu_{B}^{3}) \quad \frac{M_{Q}}{M_{B}} = 0.4$$

$$\frac{\mu_{B}}{T} = \frac{1}{r_{12}^{B,1}}R_{12}^{B} + \mathcal{O}((R_{12}^{B})^{3})$$

$$R_{31}^{B}(T,\mu_{B}) \equiv \frac{S_{B}\sigma_{B}^{3}}{M_{B}} = \frac{\chi_{3}^{B}(T,\mu_{B})}{\chi_{1}^{B}(T,\mu_{B})} = r_{31}^{B,0} + r_{31}^{B,2}\hat{\mu}_{B}^{2} + \dots$$
eliminate μ_{B}

$$= r_{31}^{B,0} + \frac{r_{31}^{B,2}}{(r_{12}^{B,1})^{2}} (R_{12}^{B})^{2}$$

Conserved charge fluctuations and freeze-out mean, variance and skewness

NLO Taylor expansion

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

lines of constant physics

... one more complication in the comparison between QCD and data

$$R_{31}^{B}(T,\mu_{B}) \equiv \frac{S_{B}\sigma_{B}^{3}}{M_{B}} = \frac{\chi_{3}^{B}(T,\mu_{B})}{\chi_{1}^{B}(T,\mu_{B})} = r_{31}^{B,0} + r_{31}^{B,2}\hat{\mu}_{B}^{2} + \dots$$

freeze-out temperature T_{f} varies as μ_{B} increases

- Taylor expansion in $T_f(\mu_B) T_f(\mu_B=0)$
- parametrization of $T_f(\mu_B) = T_f(\mu_B = 0)(1 \kappa_2^f \hat{\mu}_B^2)$

$$T_f(\mu_B)-T_f(\mu_B=0)=-\kappa_2^f\hat{\mu}_B^2$$

yields additional contribution to $O(\hat{\mu}_B^2)$ expansion coefficient

$$r^{B,2}_{31}
ightarrow r^{B,2}_{31} - \kappa^f_2 T_f(0) rac{\mathrm{d} r^{B,0}_{31}}{\mathrm{d} T} igg|_{T_f(0)}$$

lines of constant physics

... one more complication in the comparison between QCD and data

$$R_{31}^{B}(T,\mu_{B}) \equiv \frac{S_{B}\sigma_{B}^{3}}{M_{B}} = \frac{\chi_{3}^{B}(T,\mu_{B})}{\chi_{1}^{B}(T,\mu_{B})} = r_{31}^{B,0} + r_{31}^{B,2}\hat{\mu}_{B}^{2} + \dots$$
freeze-out temperature T_{f} varies as μ_{B} increases
- Taylor expansion in $T_{f}(\mu_{B}) - T_{f}(\mu_{B} = 0)$
- parametrization of $T_{f}(\mu_{B}) = T_{f}(\mu_{B} = 0)(1 - \kappa_{2}^{f}\hat{\mu}_{B}^{2})$

$$\begin{cases} r_{42}^{B,2} \to r_{42}^{B,f} \\ r_{42}^{B,2} \to r_{42}^{B,f} \end{cases}$$

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

F. Karsch, INT workshop 2016 38

Conclusions

– results on bulk thermodynamics coming from Taylor expansion of the QCD partition function are already now reliable in the range $0 \le \mu_B/T \le 2$

bulk QCD thermodynamics in the entire parameter range accessible to BES I and II may soon be accessible also through Taylor expansions

 attempts to understand freeze-out/hadronization in terms of HRG model based calculations at temperatures T > 160 MeV are difficult to conciliate with QCD;

QCD thermodynamics is quite different from HRG thermodynamics at T > 160 MeV

– properties of cumulants measured in BES-I for $\sqrt{s_{NN}} \leq 20 \text{ GeV}$ clearly differ from HRG thermodynamics but are consistent with QCD thermodynamics close to the crossover transition temperature

$$S_B \sigma_B < M_B / \sigma_B^2 ~~,~~\kappa_B \sigma_B^2 - S_B \sigma \sim \left(M_B / \sigma_B^2
ight)^2 ~,$$

– with increasing statistical accuracy current LGT calculations seem to favor estimates for the location of the critical point (if it exists) at values of $\mu_B/T>2$