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Preliminary remarks:

• The ultimate goal of the BES program is mapping the phase diagram 
of strong interactions. Or, at least, finding clear fingerprints of its 
major features.


•  It is amusing to see that a Google search (images) for something like 
"successful phase diagram mapping physics” produces lots of QCD 
phase diagrams, even though we only have cartoons… 


• We can generously interpret this as our community being very active 
and/or optimistic.


• On the other hand, several phase diagrams have been obtained in 
different realms of physics, experimentally and theoretically.
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 [Liu et al (2014)]

• However, we are still light-years away from something like:

• The problem, as also mentioned previously in this program, is that we 
have a very small, short-lived, noisy, fast-evolving system that is 
(very) indirectly probed in the BES search [see talk by Steinheimer].


• So, we need all we can use!

J. Phys.: Condens. Matter 25 (2013) 484004 N Marcano et al

the spin dynamical behaviour. For instance, in UCu5�x

Pd
x

alloys, an evolution from antiferromagnetism to Kondo and
then to SG was observed as the Pd content increases [10].
Interestingly, in the Ce2Au1�x

Co
x

Si3 system [11], the SG
phase appears first when Au is replaced by Co, then the
onset of an antiferromagnetic (AFM) phase takes place with
the Néel temperature (TN) decreasing towards a quantum
critical point. Finally, for x > 0.9, there is a full screening
of the magnetic moments due to the Kondo effect. Recently,
a detailed investigation of the magnetic properties of
CePd1�x

Rh
x

[12] close to the disappearance of magnetic order
revealed the formation of a ‘Kondo-cluster-glass’ state at very
low temperatures, where the clusters emerged from regions of
low local Kondo temperatures [13].

2. First approach to the magnetic phase diagram

One of the most outstanding examples of complex magnetic
phase diagrams is the well studied CeNi1�x

Cu
x

solid solution.
In this system, the change of the matrix concentration
provides the opportunity to follow the evolution of AFM
ordering by tuning the substitution of the Ni atoms. The
system evolves from an AFM ground state in CeCu, with
TN = 3.5 K, to a nonmagnetic intermediate-valence (IV)
state in CeNi. At first, the main objective of the study
was to search for new emergent phenomena arising close
to the QCP expected around the CeNi side (i.e. in the
weak interaction limit). Preliminary measurements consisting
of ac susceptibility (�AC), dc magnetization (MDC) (only
down to 2 K) and neutron diffraction carried out in some
representative compositions of the series (0.2  x  1), led to
the proposed magnetic ground state phase diagram presented
in figure 1 [14]. A change from antiferromagnetism for CeCu
and CeNi0.1Cu0.9 to ferromagnetism for x  0.8 alloys is
observed, as in other similar RNi1�x

Cu
x

systems [15, 16], due
to the modifications that the substitution of Cu by Ni produces
in the conduction band. The Curie temperature, TC, decreases
continuously with decreasing x (Cu content) and tends to 1 K
at composition x = 0.4. It is worth mentioning that in that
work TC was estimated by extrapolation of the Arrot plots
down to 2 K. According to this observation, the FM order was
predicted to vanish close to x = 0.2. On the other hand, in
contrast to what was expected, a ‘spin-glass-like’ phase was
found at temperatures above the FM ordered state (Tf > TC).

Starting from this magnetic phase diagram, many
important questions arose, and we list several of them
here: (i) Do we expect the existence of NFL behaviour
for concentrations close to the disappearance of FM order?
(ii) What is the origin of the ‘spin-glass-like’ phase that
stabilizes above the long-range FM ordered state? (iii) What
kind of mechanism leads the magnetic system to evolve from
a frustrated magnetic state to a long-range ordered state?
(iv) Do both frustrated and ordered states coexist at very low
temperatures?

In order to shed light on these questions, an intensive
study down to very low temperatures (T ⌧ Tf) has been
carried out over recent years. Such a study has involved the

Figure 1. Magnetic phase diagram for the CeNi1�x

Cu
x

series as a
function of Cu concentration from [14]. Open squares represent the
long-range magnetic ordering temperature TC,N and full squares
represent the spin-glass freezing temperature Tf.

use of both macroscopic and microscopic experimental tech-
niques, such as specific heat [17], ac–dc magnetization [18],
neutron diffraction and muon spectroscopy (µSR) [19]. A
combined analysis of all of these results has allowed the
magnetic ground state of the system to be mapped out. In this
work, we present the revisited magnetic phase diagram arising
from this research, pointing out the main differences found.
We will discuss the novel emerging phenomena, taking into
account the role of the interactions involved along the whole
series.

3. Revisited magnetic phase diagram

Figure 2 displays the magnetic phase diagram for
CeNi1�x

Cu
x

, which brings together the experimental studies
carried out so far. The highlights of the revisited magnetic
phase diagram can be listed as follows:

(i) The stability of the orthorhombic FeB-type structure
(Pnma space group) extends for 0.2  x  1, whereas
those alloys with x  0.15 crystallize in the CrB-type
orthorhombic structure (Cmcm space group).

(ii) The borderline defining the FM state cannot be
exactly determined, in contrast to what was previously
reported. Experimental data reveal the formation of
long-range FM order below the cluster-glass state
without any indication of a sharp transition at the Curie
temperature. Furthermore, according to the percolative
process proposed in these series [20], the FM correlation
length (⇠ ) increases when lowering the temperature from
the glassy state. This fact is illustrated in the figure
as a gradation in colour from orange (cluster-glass
state CG) to red (long-range ferromagnetic state FM),
which reflects the increasing importance of the RKKY
interactions as the temperature decreases below Tf.
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 [Marcano et al (2013)]



 

The phase diagram for QCD can be schematically divided, 
assuming it behaves roughly as a simplified cartoon of this sort 
(as suggested by several model descriptions):

Also assuming the BES spans a large enough region, so that a CEP and 
a 1st-order line can be, in principle, probed.

BES
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CEP region (near criticality): 


• (𝛏)power-dominated signatures

• background/noise -> spurious fluctuations

• finite size, finite lifetime, critical slowing down

• fast dynamics

1st-order transition region: 


• finite size, finite lifetime

• bubble nucleation & spinodal decomposition

• two-peak structure

• structure formation (patterns)

• nonzero (conserved) baryon number

• fast dynamics

BES

BES
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So

• 2 distinct regions, even if there is no clear boundary in practice

• 2 sets of problems, features, needed techniques, etc

• related sometimes, but different

Remark - direct comparison to lattice QCD can be dangerous:


• sign problem in this region (no benchmark EoS): 

   we do not have the “correct" EoS!

• the actual systems are finite and come in different sizes

   (lattice results are extrapolated to the thermodynamic limit)

• the QGP formed is very noisy, fluctuates a lot, and is indirectly 
measured within a given acceptance

• dynamics is crucial 

   (totally absent on the lattice)

Nevertheless: several statistical mechanics techniques successfully 
used in lattice simulations can be useful in analyzing the BES data
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 CEP region (near criticality) - quick recap


 In real life — including spurious effects


 Critical slowing down and finite lifetime


 Geometric & temperature fluctuations


 Finite size of the system


 Resonance decays and acceptance constraints


 1st-order transition region  


 Final remarks

Outline
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CEP region (near criticality) - quick recap: 

• Correlation length becomes divergent ⇒ system scale invariant (conformal):

• Moments of observables as signatures:

 fluctuations of 𝛔0 affect particles that couple to it (pions, protons), 

e.g. fluctuations of the occupation numbers, etc.

 This contributes to the moments of fluctuations


• Freeze-out near the CEP & correlated fluctuations of observables 

    ⇒ possible signature

In Wonderland:

• For the zero mode:

Effective model

Order parameter fluctuations

Description

• Classical treatment with homogeneous approximation a

Pσ0 [σ0] ∝ exp

(
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with mσ ∼ ξ−1, λ3 ∼ T (T ξ)−3/2 , λ4 ∼ (T ξ)−1.

aStephanov, Rajagopal, Shuryak (1999); Stephanov (2009).

Distribution spreads and changes at the CEP ⇒ singular cummulants!
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 [Stephanov, Rajagopal & Shuryak (1999); Stephanov (2002, 2009)]

 [Tsypin (1994, 1996)]

B

(couplings in the effective pot. 
renormalized by local fluctuations)
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 Higher (non-gaussian) cumulants grow faster with the correlation length:
 [Stephanov (2009); Athanasiou, Rajagopal & Stephanov (2010)]
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• Dependence on 𝛏 and on which side of the CEP one is are universal

   ⇒ possible signature in the sign of kurtosis  [Stephanov (2011)]

Sign

Higher moments also depend on which side of the CP we are


3

[�] = 2V T 3/2
˜�
3

⇠4.5 ; 
4

[�] = 6V T 2

[ 2(

˜�
3

)

2 � ˜�
4

] ⇠7 .

This dependence is also universal.

2 relevant directions/parameters. Using Ising model variables:

M. Stephanov (UIC) QCD Critical Point CERN 2016 18 / 32

• Within tree level:

 [Tsypin (1994, 1996)]

• However: this picture 
can be totally modified by 
nonequilibrium evolution 
[Mukherjee, Venugopalan & Yin (2015)]
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In real life — including spurious effects:

• Critical slowing down and finite lifetime

• Some spurious sources of fluctuations and noise

 Geometric fluctuations

 Temperature fluctuations

Finite size of the system

Resonance decays & acceptance constraints

★ Interaction via mass correction:

Effective model

Framework

Interaction

• Mass correction

δm2
π = 2G δσ0 , δmp = g δσ0 (G ≈ 300MeV, g ≈ 10). (3)

• Fluctuations of σ change m, change distribution of particles.

• Freeze-out near the CEP ⇒ possible observation.

• Correlated fluctuations of observables ⇒ signal.

• Analytically, expansion in δσ0 followed by average.

Framework for Monte Carlo simulations!
Background can be added!

Mauŕıcio Hippert (IF-UFRJ) Signatures of the QCD CEP and BG May 23, 2016 8 / 23

★ Fluctuations of 𝛔0 change m ⇒ modifies distribution of particles. 


★ Freeze-out near the CEP.

Alternative — Monte Carlo simulation with
 [Hippert, ESF & Santos (2015); Hippert & ESF (to appear)]

[details: see talk by Hippert]
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R

★ Finite system

★ Dirichlet boundary conditions: 


more natural than cubic, yet simple

★         : average over a grand-canonical 
ensemble with 𝛅𝛔, 𝛅R, 𝛅T, etc fixed.


★        : average over 𝛅𝛔, 𝛅R, 𝛅T, etc.

★ A and B: in terms of boson/fermion 

distributions & fluctuations in energy levels.

h· · · i

· · ·
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Mauŕıcio Hippert (IF-UFRJ) Signatures of the QCD CEP and BG May 23, 2016 7 / 23

Effective model

Order parameter fluctuations

Description

• Classical treatment with homogeneous approximation a

Pσ0 [σ0] ∝ exp

(

−Ω[σ0]

T

)

, (1)

Ω[σ0] = V

(

m2
σ

2
σ2
0 +

λ3

3
σ3
0 +

λ4

4
σ4
0 + · · ·

)

, (2)

with mσ ∼ ξ−1, λ3 ∼ T (T ξ)−3/2 , λ4 ∼ (T ξ)−1.

aStephanov, Rajagopal, Shuryak (1999); Stephanov (2009).

Distribution spreads and changes at the CEP ⇒ singular cummulants!
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Framework
★ Monte Carlo with probability distribution:

★ Or, analytically approx. (systematic):

★ Caveats: equilibrium, no expansion, 
long-range fluctuations dominate.


★ Advantages: can include all sorts of 
spurious fluctuations; can be 
systematically improved; can include 
dynamics.
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• Critical slowing down and finite lifetime 𝛕

 Near the CEP, 𝛏 grows 

⇒ regions that represent fluctuations around equilibrium get larger 


⇒ relaxation is slower and slower near the CEP: 𝛕relax ∼ 𝛏z 


 the value of z depends on the dynamic universality class of the system

                                                                [Guida & Zinn-Justin (1997)]

 𝛏 does not reach its equilibrium value, and is limited by 𝛕relax ≲ 𝛕

 𝛏(t) and cumulants also follow Kibble-Zurek scaling [Mukherjee, Venugopalan & Yin (2016)]

Why ⇠ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism.

Critical slowing down means ⌧
relax

⇠ ⇠z.
Given ⌧

relax

. ⌧ (expansion time scale):

⇠ . ⌧1/z,

z ⇡ 3 (universal).

Estimates: ⇠ ⇠ 2� 3 fm
(Berdnikov-Rajagopal)

KZ scaling for ⇠(t)
and cumulants
(Mukherjee-Venugopalan-Yin)

M. Stephanov (UIC) QCD Critical Point CERN 2016 24 / 32 [Berdnikov & Rajagopal (2000)]

Limitations

HICs’ inherent limitations

Also, no thermodynamic limit or equilibrium.

Critical Slowing Down

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

-1 -0.5 0 0.5 1 1.5 2 2.5

ξ
(f

m
)

t/τ

A = 1.9
A = 0.9
A = 0.2

• ξ ! ∞

• Equilibration is slow near the critical
point.

• ξ does not reach its equilibrium value.

• Speed-of-light limit

Berdnikov, Rajagopal (2000),
MH, Fraga, Santos (2015).

Mauŕıcio Hippert (IF-UFRJ) Signatures of the QCD CEP and BG May 23, 2016 13 / 23

 [Hippert, ESF & Santos (2015)]

 best scenario, free 
parameter limited by 
the speed of light!

[see talk by Mukherjee]
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★ Volume fluctuations from a centrality bin width effect (CBWE) — 
variations of the volume within a centrality bin — not initial volume 
fluctuations (from dynamical initial conditions).


★ Since the resulting distribution turns out not to be Gaussian, volume 
fluctuations will also affect higher-order cumulants.


★ Impact parameter distribution ⇒ overlap area. 


★ Assumption V(b) = C A(b,RN); fix <Rplasma> = 6.8 fm for 0 − 5% centrality. 

★ RN = 6.38 fm taken from Woods-Saxon nuclear density profile.

 [Hippert, ESF & Santos (2015)]

• Some spurious sources of fluctuations

 Geometric fluctuations

Limitations

HICs’ background contributions

In HICs, not everything is under control

1 Gaussian temperature fluctuations (σT = 5%)

2 Geometrical fluctuations (below)

Geometric fluctuations

R

b

• Impact parameter distribution ⇒ Overlap area.

• Assumption V (b) = C A(b).

• Fix Rp = 6.8 fm for 0− 5% centrality.

• Analytically, expansion of pi =
αi

Rp + δRp
.

Mauŕıcio Hippert (IF-UFRJ) Critical vs. spurious fluctuations June 16, 2016 7 / 13
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 Temperature fluctuations: gaussian 
distribution of temperatures, with 
a 5% standard deviation.
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Results taking into account volume and temperature fluctuations 
as background + finite lifetime (critical slowing down)

 [Hippert, ESF & Santos (2015); Hippert & ESF (to appear)]

★ Systems goes through the CEP (very optimistic!).

★ Signal above reference (“far from the CEP”, 𝛏=𝛏0=1.6fm).

★ Ising universality class assumed.

★ 106 events in the MC simulations.

★ acceptance: 0 < pT < 1 GeV &  𝜼 < 0.5

★ Time spent near CEP: 𝝉 = 1fm (optimistic) , 


 (vertical lines)         𝝉 = 5.5fm (overly optimistic)

% increase

CEP vicinity

[details & preliminary 
results for protons & 
higher-order cumulants: 
see talk by Hippert]

★ 2nd-order moment (for simplicity); 
doable for higher orders (soon!).

Signal =
�N (⇠)� �N (⇠0)

�N (⇠0)

�N (⇠) =
h(�N⇡ch)

2i
hN⇡chi
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Finite size of the system

• Measurements will generally probe pseudocritical, smoothened, 
shifted thermodynamic quantities. Ex. – cumulants:

[Palhares, ESF & Kodama (2009)]

• Most (≈all) signatures 
based on non-monotonic 
behavior of observables 
part ia l ly h i d den by 
background + shifts and 
smoothening.

15

• In BES even smaller systems 
(plasmas) are expected! Not 
only a centrality effect!

Distance to the CEP: constrained by the freeze-out curve, parameterized by the 
chemical potential    or the center-of-mass energy          .

Observables: transverse momentum fluctuations, pion multiplicity 
fluctuations, ...

Size: from HBT analysis.

Most signatures will probe pseudocritical quantities, with smoothened divergences and shifted 
peaks. The correlation-length (  ) dependence of the cumulants          of the order parameter are:

Given the short lifetime and the reduced volume of the quark-gluon plasma formed in high-
energy heavy ion collisions (HIC’s), a possible critical endpoint (CEP) will be blurred in a region 
and the effects from criticality severely smoothened. A direct consequence of this fact is that all 
signatures of the second-order CEP based on the non-monotonic behavior [1] or sign 
modifications [2] of particle correlation fluctuations will probe a pseudocritical endpoint that can 
be significantly shifted from the genuine (unique) CEP by finite-size corrections and will be 
sensitive to boundary effects [3]. This feature, together with the even more crucial limitation on 
the growth of the correlation length due to the finite (short) lifetime of the plasma and critical 
slowing down [4], makes the experimental searches of signatures of the presence of a critical 
point at lower energies very challenging. Rounding and smoothening of fluctuation peaks tend 
to hide them behind the background. 

⇠ h�ni

X(t, L) = L�
x

/⇥ fx(tL
1/⇥)

{

t = (T � Tc)/Tc

FSS predictions for different 
energies, based on STAR data: 

Eduardo S. Fraga1, Letícia F. Palhares1,2 and Paul Sorensen3

1 Instituto de Física, Universidade Federal do Rio de Janeiro, Brasil
2 Institut de Physique Théorique, CEA/DSM/Saclay, France

3 Physics Department, Brookhaven National Laboratory, USA

Nevertheless, the non-monotonic behavior of correlation functions near criticality for systems of 
different sizes, given by different centralities in heavy ion collisions, must obey finite-size 
scaling. We apply the predicting power of scaling plots to the search for the CEP of strong 
interactions in heavy ion collisions using data from RHIC and SPS [5]. The results of our data 
analysis exclude a critical point below chemical potentials µ ≈ 450 MeV. Extrapolating the 
analysis, we speculate that criticality could appear slightly above µ ≈ 500 MeV. Using available 
data we extrapolate our scaling curves to predict the behavior of new data at lower center-of-
mass energy, currently being investigated in the Beam Energy Scan program at RHIC [6]. If it 
turns out that the QGP phase is no longer achievable in heavy ion experiments before the CEP is 
reached, FSS might be the only way to experimentally estimate its position in the phase diagram. 
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The system created in HIC’s is FINITE, and its 
size is CENTRALITY-DEPENDENT,                 :L(Npart)

L ⇠ 10� 15 fmL < 10 fmL ⇠ 2 fm

The pseudocritical chiral 
phase diagram within the 
l inear sigma model with 
constituent quarks: SIZABLE 
CORRECTIONS for length 
scales probed at current HIC’s.

HIC data: an ensemble of 
media of different sizes.

Tc TL
c T

��n⇥
h�ni

T

L4L1

Superposition of different peaks 

broadening of 
the signal

h⇥niL ⇠ �pn fn(�/L)

CEP positions

(APC)PBC: 
(Anti)periodic 
bound. conds.

TTc

L<

L>
L��

x

/⇥h�ni

ν ⇒ universal critical exponent (div. of corr. length)

Cumulants’ size dependence

{ µ p
snn

We analyze pragmatically the available transverse momentum fluctuation data from RHIC and 
SPS [8] through the FSS prism, assuming the existence of a CEP. 

STAR data for center-of-mass energies 19.6, 62.4, 130 and 200 GeV:

Data seems to favor values 
of the critical chemical 
potential above 450 MeV

Outlook: The fact that FSS prescinds from the knowledge of the details of the system under 
consideration, providing information about its criticality based solely on its most general features, 
makes it a very powerful and pragmatic tool for data analysis in the search for the CEP. From a very 
limited data set in energy spam, we have used FSS to exclude the presence of a critical point at 
values of the chemical potential below 450 MeV. We have also used the scaling function to predict 
the behavior of data with system size at lower energies. We are looking forward to compare our 
predictions to the outcome of data analysis from the Beam Energy Scan program at RHIC.

• Restricted data          extrapolations using fits

• Scaling function should be smooth
                polynomial fit for each L 

• Enforce the condition that all the curves 
cross at some critical    (adjustable parameter)µ

• Estimated position of the CEP based on FSS of 
current data still highly dependent on the 
assumed functional form of f. 

• The small energy dependence of the curves for a 
given L indicates within the FSS assumption that 
the CEP should be at  values well above those 
currently available. 

• For the current set of data, full scaling plots are 
still not very enlightening.

• We use the quadratic polynomial fit of STAR data 
and assume the critical point is at 509 MeV to make 
predictions at lower RHIC energies for the Beam 
Energy Scan Program [8]. 

• The centrality dependence changes once one moves 
to the other side of the critical point - a generic 
signal for having reached the first-order phase 
transition side of the CEP.

We thank M. Chernodub, T. Kodama, Á. Mócsy, K. Rajagopal, K. Redlich and M. Stephanov for fruitful 
discussions. This work was partially supported by CAPES, CNPq, FAPERJ and FUJB/UFRJ.



 
16INT, Seattle, October/2016 Eduardo S. Fraga

Shifts in the phase diagram (equilibrium) [Palhares, ESF & Kodama (2009)]

★ Effect that adds up to finite 
lifetime and critical slowing down.


★ Direct use of lattice data can be 
dangerous also for this reason.
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Finite-size scaling as a tool for searching the CEP
[ESF, Palhares & Sorensen (2011)]

In the vicinity of the CEP: 

• FSS applies as can be demonstrated by a RG analysis.

• For any correlation function of the order parameter all lines should 
collapse in a full scaling plot:

Ex.: cumulant scaling plots

17
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✓ Size (L): difference defined by centrality; estimated by HBT.


✓ Distance to the CEP (“t”): constrained by freeze-out curve, parametrized either 
by μ or by center-of-mass energy


✓ Observables (X): transverse momentum fluctuations, pion multiplicity fluctuations 
(soft pions), etc.


✓ Caveat: method hindered by critical slowing down effects.CHAPTER 3. PSEUDOCRITICAL PHASE DIAGRAMOF STRONG INTERACTIONS...55
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Figure 3.11: Scaled σpT /⟨pT ⟩ vs µ for different system sizes, and with ν = 2/3 and γx = 1.

Data extracted from RHIC collisions at energies
√
sNN = 19.6, 62.4, 130, and 200 GeV (linear

fit, see text).

eterization from Ref. [100] to convert from
√
sNN to µ. If there is a critical point at µ = µcrit,

the curves for different sizes of the system should cross at this value of µ. However, since

the currently available data is restricted to not so large values of the chemical potential, one

has to perform extrapolations using fits. The scaling function f in Eq. 3.6 is expected to

be smoothly varying around the critical point, so we fit the data corresponding to a given

linear size L to a polynomial, but constraining the polynomials to enforce the condition

that all the curves cross at some µ = µcrit, where µcrit is an adjustable parameter in the fit.

This clearly assumes the existence of a critical point. In Fig. 3.11 we use a linear fit. The

approximate energy independence of σpT /⟨pT ⟩ along with the linear fit, leads to a very large

µ value where the curves can cross (µ ∼ 3 GeV). There is no reason however to assume a

linear fit function, so in Fig. 3.12 we also try a second order polynomial. Using the a second

order polynomial function for f allows the curves from different system sizes to cross at a

much smaller value of µ. Based on this fit, we find that the data is consistent with a critical

point at µ ∼ 510 MeV corresponding to a
√
sNN of 5.75 GeV.
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Figure 3.12: Scaled σpT /⟨pT ⟩ vs µ for different system sizes, assuming µcrit = 509 MeV, which

corresponds to a critical point at
√
sNN = 5.75 GeV. Again, ν = 2/3 and γx = 1. Data

extracted from RHIC collisions at energies
√
sNN = 19.6, 62.4, 130, and 200 GeV (second

order polynomial fit, see text).

The value estimated for µcrit based on finite-size scaling of current data is highly depen-

dent on the assumed functional form of f . The approximate energy independence of σpT /⟨pT ⟩

for a given L, however, already indicates within the finite-size scaling assumption that the

critical point should be at µ values well above those currently available. Based on finite-size

scaling of σpT /⟨pT ⟩, one would not expect a critical point at µ < 400 MeV. Having data for

lower values of
√
s, i.e. higher values of chemical potential, as expected from the analysis of

the Beam Energy Scan program at RHIC [59], one should be able to study full scaling plots

of σpT /⟨pT ⟩ scaled by L−γx/ν vs. µ−µcrit

µcrit
L1/ν without the need of long extrapolations. For the

current set of data, these full scaling plots would not be very enlightening.

RHIC has also run at lower energies in order to search for a critical point in the Beam

Energy Scan program. That data is currently being analyzed. Here we use the quadratic

polynomial fit of STAR data (Fig. 3.12) and assume the critical point is at 509 MeV to

make predictions for σpT /⟨pT ⟩ at lower energies. The finite-size scaling scenario along with

• Very restricted data -> extrapolations using fits.

• Scaling function should be smooth -> polynomial fit for each L.

• Enforce the condition that all the curves cross at some critical 𝛍 (adjustable parameter).

• Data at the time seemed to favor values of the critical chemical potential above 450 MeV.

[ESF, Palhares & Sorensen (2011)]

[see talk by Lacey]
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Finite-size effects on cumulants
 [Hippert & ESF (to appear)]

★ Overall volume factor cancels out.

★ Signal above reference (“far from the CEP”, 𝛏=𝛏0=1.6fm).

★ acceptance: 0.4 < pT < 0.8 GeV &  𝜼 < 0.5

★ Time spent near CEP: 𝝉 = 1fm (optimistic) , 


 (vertical lines)         𝝉 = 5.5fm (overly optimistic) [details & results for protons: 
see talk by Hippert]
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Acceptance constraints  [Hippert & ESF (to appear)]

★ Signal above reference 

(“far from the CEP”, 𝛏=𝛏0=1.6fm).


★ acceptance: 0.4 < pT < 0.8 GeV for diff.  𝜼 

★ Small effect for larger values of 𝜼 


(saturates near 𝜼=2)

★ Less momentum modes pairs due to 


“directional cut”

pTmax

pTminsoft pions

[details & results for protons: 
see talk by Hippert]
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Resonance decays and acceptance constraints  [Hippert & ESF (to appear)]

★ 0 P: no particle detected

   1 P: only 1 particle detected

   2 P: 2 particles detected


★ Abrupt cut for 2P given by twice pTmax 

resonance, pres

𝛑, p2

𝛑, p1

m=770 MeV

[details & results for protons: 
see talk by Hippert]

[acceptance: 0.4 < pT < 0.8 GeV]



 
22INT, Seattle, October/2016 Eduardo S. Fraga

1st-order transition region 
B

• Finite size, finite lifetime

 Smaller systems (due to smaller collision energies).

 Smaller expansion rates (due to smaller pressure gradients).

 No critical slowing down.


• Bubble nucleation & spinodal decomposition

⇒ structure formation (inhomogeneous patterns).


• Two-peak structure due to competing phases (lattice-inspired method)

⇒ probability histograms of bulk quantities (not correlation functions).


⇒ correlation functions will not distinguish crossover from 1st order PT.


• Nonzero (conserved) baryon number

    ⇒ constraint on phase conversion dynamics


• Fast dynamics
[Chernodub, ESF, Palhares & Sorensen (unpubl., 2011)]
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Figure 4.5: Example of bubble pro-

file.

Figure 4.6: Sketch of the difference

of coarse-grained free energy be-

tween the configurations with and

without a bubble of radius R.

process.

Finally, from Eq. (4.2) it is clear that the surface tension can be obtained via the

knowledge of the effective potential Veff and the critical bubble profile φb(r;R = Rc). Since

the critical bubble itself is an unstable extremum of the coarse-grained action F in Eq.

(4.1), it is ultimately obtained from the effective potential Veff as well. In the thin wall

approximation (valid when the critical bubble has a thin interface region as compared to its

radius, i.e. ξ ≪ Rc; cf. Fig. 4.5) for a quartic effective potential, the solution φb(r;R = Rc)

can be written analytically in terms of the Taylor coefficients of the potential.

4.2.1 Extracting nucleation parameters from the effective poten-

tial

Since our framework is an effective model, we can only aim for reasonable estimates and

functional behavior, not numerical precision. Therefore, it is convenient to work with ap-

proximate analytic relations by fitting the relevant region of the effective potential by a

quartic polynomial and in the thin-wall limit approximation for bubble nucleation. Follow-

ing Refs. [82, 83], we can express the effective potential over the range between the critical

chemical potential, µc, and the spinodal, µsp, in the familiar Landau-Ginzburg form

Veff ≈
4
∑

n=0

an φ
n . (4.3)
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[110, 111], and previously in Refs. [120, 121], that corresponds to temperatures of the

order of 10 − 20 MeV [122]. At these temperatures, and in the presence of a barrier in the

effective potential, thermal nucleation dominates over quantum nucleation. As soon as the

barrier disappears, the spinodal instability is reached and the mechanism that takes over

is the explosive spinodal decomposition. The range of temperatures under consideration is,

then, high enough to allow for thermal nucleation (quantum nucleation being comparatively

negligible [110, 111, 112, 123]) and low enough to justify the use of the zero-temperature

effective potential computed previously. Temperatures of a couple of tens of MeV will not

modify appreciably the equation of state, bringing corrections O(T 2/µ2) ∼ 1% for the typical

values of chemical potential for the system under consideration. Nevertheless, as will be

shown later, thermal corrections can be important for the process of nucleation.

As stated above, with the aim of quantifying the surface tension associated with the cold

and dense chiral phase transition in QCD, we will adopt the framework of homogeneous

nucleation proposed by Langer [119]. It is based on the construction of a coarse-grained

free energy functional F [σ] for the configuration of the order parameter field σ from a given

effective potential Veff as follows:

F [σ] = 4π

∫

r2dr

[

1

2

(

dσ

dr

)2

+ Veff(σ)

]

, (4.1)

where spherical symmetry has been assumed.

Figure 4.4: Cartoon of the temperature versus chemical potential phase diagram with a first

order critical line (solid) and the spinodal curves (dashed) defining the metastable region.

Around the domain of temperature T and chemical potential µ in which a first-order phase

[Garcia-Ojalvo et al (1998)]

Bubble nucleation & spinodal decomposition

⇒ structure formation (patterns)

★ Mechanically unstable regions 
in the phase diagram

★ Free energy in the unstable direction

★ Different patterns

How will such structures affect 
hydro, transport, etc?



 

! We have 2 distinct regions, even if there is no clear boundary in practice: 
criticality effects x pattern formation signatures.


! Near the critical region, one can systematically incorporate spurious 
contributions (resonances, acceptance limitations, finite size, finite lifetime and 
critical slowing down) expected to affect the fluctuations in the BES. It is a 
method that can be improved or adapted.


! Results from the second moment for pions are small (as expected). But now we 
have estimated how this signal is diminished by the background. Results for higher 
moments (and also for protons) soon!


! Dynamics is still missing in this approach. But the evolution of cumulants can be 
incorporated. Also, it can in principle be coupled to hydro.


! Comparison to lattice results are useful, but should be done with extra caution.


! The 1st-order region might offer a different class of signatures to be explored.

Final remarks
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