How to Maximize the Impact of Low Beam Energy Data?

Gev

2.2Get

Helen Caines Yale

STARrent and expected data

Improving on current data E 107

Current low energy data: Hints that at low √s QGP turns off 1st order phase transition Critical Point Chiral symmetry restoration

Future data:

Examine regions of interest Maximizing fraction particles measured Probe lower √s High(er) luminosities

Million Events

Turn trends and features into definitive conclusions

Establishing the "basics": Yields and spectra

STAR can measure forward and backwards

Inching towards full phase space measurements

(preliminary pions at QM2015 preliminary protons at DNP, Kaons coming soon C.Flores)

Establishing the "basics": Hadro chemistry

Establishing the "basics": Kinetic freeze-out

Horns and plateaus

K. Grebieszkow CPOD16

Establishing the "basics": Energy density

E_T/N_{ch} relates to average transverse mass of produced particles rises, plateaus, rises again constant as function of N_{part}

Leveling off starts around $\sqrt{s} \sim 7$ GeV

For central events:

Bjorken energy density* $\tau > 1 \text{ GeV/fm}^2$ c

 $\epsilon_{BJ}\tau \propto e^{b \times \log(\sqrt{s_{NN}})}; (b = 0.422 \pm 0.035)$

 $\epsilon_{BJ}\tau < 1$ for low energy peripheral events

Can we establish τ ?

First order phase transition?

Beam energy baryon dv_1/dy trend complex PRL 112,162301 (2014) interplay of: 0.02 v_1 baryons transported from beam v_1 from pair production 0.01 Net-proton isolates directed flow of

transported:

Double sign change in dv_1/dy

14.5 GeV in published trend

Not seen in kaons

Many transport models have monotonic trend

Softening of EoS?

"Dale" in longitudinal expansion

Probe expansion dynamics:

Width of rapidity distribution compared to Landau hydro. expansion predictions

Minimum observed at $\sqrt{s} = \sim 7 \text{ GeV}$

 $c_{s}^{2} \sim 0.26$

Another indication of softening of EoS?

E895: J. L. Klay et al, PRC 68, 05495 (2003) NA49: S. V. Afanasiev et al. PRC 66, 054902 (2002) BRAHMS: I.G. Bearden et al., PRL 94, 162301

SHINE see minima in similar place for pp data

BES results for $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$

Eccentricity at freeze-out

Accessed via azimuthal HBT

Presence of Critical Point?

Critical Points:

divergence of susceptibilities

e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Top 5% central collisions:

Correlation lengths diverge \rightarrow Net-p $\kappa\sigma^2$ diverge

13

200

Presence of Critical Point?

Critical Points:

divergence of susceptibilities

e.g. magnetism transitions divergence of correlation lengths e.g. critical opalescence

Top 5% central collisions:

Correlation lengths diverge \rightarrow Net-p $\kappa\sigma^2$ diverge

HBT and the CP

 $(R^{2}_{out} - R^{2}_{side})$ sensitive to emission duration

If softening of EoS:

Non-monotonic pattern as function of $\sqrt{s_{NN}}$

Finite size scaling effects can be used to extract location of deconfinement transition

Plot of $(R^{2}_{out} - R^{2}_{side})$ as function of initial transverse size of the system

Slope and intercept give information on the location of CP at infinite volume and the critical exponents

Infinite volume $\sqrt{s_{NN}} = 47 \text{ GeV}$

 T^{cep} : 165 MeV, μ_B^{cep} : 95 MeV

2nd order phase transition

R. Lacey, PRL 114, 142301

10

The spinning QGP

Feeddown corrected

First observation of global hyperon polarization

Marginal significance for each energy

Ensemble and trend add confidence

anti- $\Lambda > \Lambda$

Both EM and vorticity

I. Upsal (INT BES 2016)

STAR upgrades for BES-II

Enhanced Acceptance Enhanced PID Enhanced Event Plane Resolution Enhanced Centrality Definition

16

iTPC

Increase in #channels in 24 inner sectors by ~factor 2

Provides near complete coverage

New electronics for inner sectors

Enhanced tracking and dE/dx performance

Event Plane Detector: EPD

2.1 < |ŋ| < 5.0

Replacing BBCs

16 radial and 24 azimuthal sections

Endcap Time-Of-Flight: eTOF

Forward PID over iTPC η range

 $-1.6 < \eta < -1.1$ TPC dE/dx effic. drops rapidly in this range due to p_z boost

Compressed Baryonic Matter Experiment (CBM)

1/10th TOF modules installed inside East pole-tip

Large-scale integration test of system for CBM

Single TOF module for Run-17

- integration test

BES-II: Softening of EoS

BES-I: Double sign change of v₁

Precision measurement of dv₁/dy as function of centrality

iTPC+ eTOF:

Enhanced coverage at forward y Signal larger - role of baryon stopping

BES-II: Softening of EoS

BES-I: Double sign change of v₁

Precision measurement of dv₁/dy as function of centrality

BES-II: Critical fluctuations

BES-I: Suggestive of non-trivial \sqrt{s} dependence of net proton

cumulant ratios

iTPC: Increase Δy_p acceptance $\Delta y_p > \Delta y$ correlation EPD:

Improved centrality selection Use all TPC for measurement

Low mass di-lepton excess

HP2016 J. Butterworth (STAR) P. Sellheim (HADES)

In Au+Au excess scales as A^{1.3}part Low mass excess ∝ fireball lifetime

for large range of beam energies and centralities

Results suggest excess from total baryon driven hot dense medium effects and the medium's lifetime

×10⁻⁶

Looking forward to adding HADES, BES-II and LHC data into trend plots

BES-II: Change the total baryon number

p-meson broadening:

different predictions for di-electron continuum (Rapp vs PHSD) iTPC: Significant reduction in sys. and stat. uncertainties

Enables to distinguish between models for $\sqrt{s} = 7.7-19.6$ GeV

Low Mass Region:

iTPC: Significant reduction in sys. and stat. uncertainties

Disentangle total baryon density effects

BES-II: Vorticity and Initial B-field

BES-I: First measurement of A Global Polarization

BES-II: Onset of deconfinement

NA49 - onset of deconfinement at \sqrt{s} = 7.7 GeV

Fixed target program Collider can't run below 7.7GeV Target in beam pipe at z=210cm

Will perform dedicated short runs More efficient Successful tests completed

TOF+iTPC: Forward acceptance in fixed target

mid-rapidity range Reach 7.7 GeV for fixed target too

> Precision investigation with new techniques and same detector

Summary

High statistics exploration of QCD phase diagram and its key features

- Significantly extended detection capabilities
- $iTPC \rightarrow enhanced y- p_T acceptance$ Project en route to success
- $\mathsf{EPD} \to \mathsf{crucially}$ improved EP resolution Hopeful support will be found
- $eTOF \rightarrow significant \ improvement \ to \ PID \$ Hopeful support will be found
- eCooling \rightarrow higher beam luminosities, better statistics
- Also new data from SPS, FAIR and NICA on the horizon

In conjunction: Turn trends and features into definitive conclusions

Strong theoretical interest: BEST Collaboration & this Workshop