Multi-particle correlations, baryon stopping and non-binomial efficiency

Adam Bzdak

AGH University of Science and Technology, Krakow

AB, R. Holzmann, V. Koch, 1603.09057

AB, V. Koch, N. Strodthoff , 1607.07375

A. Bialas, AB, V. Koch, 1608.07041

Efficiency correction is important

 K_4/K_2 my notation K_3/K_2

If efficiency is driven by binomial with p (or ϵ)

So we express true cumulants through factorial moments F_i , which are known from the above equality (f_i is measured, p is known)

AB, V. Koch, PRC 86 (2012) 044904; PRC 91 (2015) 027901 If ϵ depends on N the method brakes down.

R. Holzmann, talk at HIC for FAIR

Let's test it. Suppose that

$$P(N) = \frac{\langle N \rangle^N}{N!} e^{-\langle N \rangle},$$

$$\epsilon(N) = \epsilon_0 + \epsilon'(N - \langle N \rangle)$$

$$B(n, N) = \frac{N!}{n!(N-n)!} \epsilon(N)^n \left[1 - \epsilon(N)\right]^{N-n}$$

We calculate exact f_i and correct using constant efficiency $F_i = f_i / \epsilon_0^i$.

We use $\langle N \rangle = 40$, $\epsilon_0 = 0.65$ and plot K_n/K_2 as a function of ϵ' .

X. Luo [STAR Collaboration] arXiv:1503.02558 [nucl-ex]].

We obtain

AB, R.Holzmann, V.Koch arXiv:1603.09057

Large corrections for small ϵ'

Non-binomial distribution, e.g., beta-binomial distribution (we return 2 balls) AB, R.Holzmann, V.Koch arXiv:1603.09057

Beta-binomial	$\alpha = 30$	$\alpha = 60$	$\alpha = 150$	$\alpha = 1000$
K_{3}/K_{2}	1.28	1.24	1.13	1.02
K_4/K_2	0.82	1.45	1.35	1.07
K_5/K_2	-1.11	1.15	1.63	1.16
K_{6}/K_{2}	5.71	-0.44	1.80	1.32

Take-home message

- Multiplicity dependent efficiency and non-binomial efficiency is (most likely) important
- Technique based on correcting factorial moments is not good enough
- Proper unfolding is warranted (see backup)

Multi-particle correlation functions

based on preliminary STAR data

See also: B.Ling, M.Stephanov, PRC 93 (2016) no.3, 034915

$$\rho_{2}(y_{1}, y_{2}) = \rho(y_{1})\rho(y_{2}) + C_{2}(y_{1}, y_{2}) \qquad \begin{array}{c} \text{correlation} \\ \text{function} \\ \rho_{2}(y_{1}, y_{2}) = \rho(y_{1})\rho(y_{2})[1 + c_{2}(y_{1}, y_{2})] \qquad \begin{array}{c} \text{reduced correlation} \\ \text{function} \\ \left\langle N(N-1) \right\rangle = \langle N \rangle^{2} + \langle N \rangle^{2} c_{2} \\ c_{2} = \frac{\int \rho(y_{1})\rho(y_{2})c_{2}(y_{1}, y_{2})dy_{1}dy_{2}}{\int \rho(y_{1})\rho(y_{2})dy_{1}dy_{2}} \\ \end{array}$$

and the second order cumulant

$$K_2 = \langle N \rangle + \langle N \rangle^2 c_2$$

In the same way

 $\rho_3(y_1, y_2, y_3) = \rho(y_1)\rho(y_2)\rho(y_3)[1 + c_2(y_1, y_2) + \dots + c_3(y_1, y_2, y_3)]$

$$F_3 = \langle N(N-1)(N-2) \rangle = \langle N \rangle^3 + 3 \langle N \rangle^3 c_2 + \langle N \rangle^3 c_3$$

$$c_{3} = \frac{\int \rho(y_{1})\rho(y_{2})\rho(y_{3})c_{3}(y_{1}, y_{2}, y_{3})dy_{1}dy_{2}dy_{3}}{\int \rho(y_{1})\rho(y_{2})\rho(y_{3})dy_{1}dy_{2}dy_{3}}$$
coupling

and the third order cumulant

$$K_{3} = \langle N \rangle + 3 \langle N \rangle^{2} c_{2} + \langle N \rangle^{3} c_{3}$$
$$3C_{2} \qquad C_{3}$$

Finally we obtain

$$c_{2} = \frac{\int \rho(y_{1})\rho(y_{2})c_{2}(y_{1}, y_{2})dy_{1}dy_{2}}{\int \rho(y_{1})\rho(y_{2})dy_{1}dy_{2}}$$
$$C_{2} = \int C_{2}(y_{1}, y_{2})dy_{1}dy_{2}$$

 $K_2 = \langle N \rangle + \langle N \rangle^2 c_2$

 $K_3 = \langle N \rangle + 3 \langle N \rangle^2 c_2 + \langle N \rangle^3 c_3$

 $K_4 = \langle N \rangle + 7 \langle N \rangle^2 c_2 + 6 \langle N \rangle^3 c_3 + \langle N \rangle^4 c_4$

or, e.g.,

cumulants mix correlation functions

 $K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$

results for C_n

arXiv:1607.07375

*C*₄ at 62 GeV !

$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$

cumulant

correlation functions

Observations (i)

$$K_{2} = \langle N \rangle + \langle N \rangle^{2} c_{2}$$

$$K_{4} = \langle N \rangle + 7 \langle N \rangle^{2} c_{2} + 6 \langle N \rangle^{3} c_{3} + \langle N \rangle^{4} c_{4}$$

Suppose we have N_s independent sources of correlations (resonances, superposition of p+p etc.)

$$c_k \sim \frac{N_s}{N^k} \sim \frac{1}{N^{k-1}}$$

results for c_2

central 7 GeV points are somehow special

results for c_3

AB, V. Koch, N. Strodthoff, arXiv:1607.07375

At 7 GeV c_3 changes sign and is roughly constant

Similar stuff for c_4 (backup)

Observations (ii)

rvations (ii)

$$c_{2} = \frac{\int \rho(y_{1})\rho(y_{2})c_{2}(y_{1},y_{2})dy_{1}dy_{2}}{\int \rho(y_{1})\rho(y_{2})dy_{1}dy_{2}}$$

$$K_{2} = \langle N \rangle + \langle N \rangle^{2}c_{2}$$

$$K_{4} = \langle N \rangle + 7\langle N \rangle^{2}c_{2} + 6\langle N \rangle^{3}c_{3} + \langle N \rangle^{4}c_{4}$$

Rapidity dependence:

long-range correlation

 $c_n(y_1, \dots, y_n) = c_n^0$

 $c_n = c_n^0$

short-range correlation

$$c_2(y_1, y_2) = c_2^0 \delta(y_1 - y_2)$$

$$c_2 \sim 1/(\Delta y)$$

$$K_n \sim \Delta y$$

 $K_2 = \langle N \rangle + c_2^0 \langle N \rangle^2, \qquad \langle N \rangle \sim \Delta y$

 $K_4 = \langle N \rangle + 7c_2^0 \langle N \rangle^2 + 6c_3^0 \langle N \rangle^3 + c_4^0 \langle N \rangle^4$

Rapidity dependence consistent with long-range correlations

|y| < 0.5 is not particularly large

Initial state effect? (e.g., volume fluctuation)

Volume fluctuation has some interesting and promising properties for central collisions, see talk by V. Skokov

It would be great to see Δy dependence of C_n (separately for protons and anti-protons) for all energies and centralities.

Suppose that always $C_n \sim (\Delta y)^n$

What does that mean? Most likely initial state effect

 $K_{4} = \langle N \rangle + 7C_{2} + 6C_{3} + C_{4}$

cumulant

correlation functions

Observations (iii)

$$K_{2} = \langle N \rangle + \langle N \rangle^{2} c_{2}$$

$$K_{4} = \langle N \rangle + 7 \langle N \rangle^{2} c_{2} + 6 \langle N \rangle^{3} c_{3} + \langle N \rangle^{4} c_{4}$$

If c_n weakly depends on N than for $\langle N \rangle \ll 1$ (anti-protons) $K_n \approx \langle N \rangle$

Exclusions plots

$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$

cumulant

correlation functions

23

-0.8 -1.6

-0.8

-1.6

C₃ < 0

0.

0.4

0.2

0.

-0.2

-0.4

0.

Take-home message

- Cumulants are rather tricky to interpret
- Multi-particle correlations seems to be more natural
- Independent sources vs collective sources
- Long-range rapidity vs short-range rapidity
- Let's do **exclusions plots**

Baryon stopping

At low energy protons are not produced. They are transferred from incoming nucleus.

There is no infinite deceleration. It take some time and length to slow down or stop a proton.

$$E_z = E_i - \sigma(z - z_c)$$

- E_i initial energy
- z_c collision point
- E_z energy at a point z $E_z \rightarrow M_t \cosh(y)$
- σ energy loss per unit length

Are protons stopped in pairs, triplets etc.?

Correlation between pions and protons from stopping?

Conclusions

Efficiency story not yet over, non-binomial corrections are surprisingly strong

Multi-particle correlations carry interesting information. Independent vs collective sources, short- vs long-range correlations, exclusion plots ...

The effect of baryon stopping not yet understood. Disconnected stopped protons in the z direction ?

Backup

results for c_4

results for central c_3

We need to do proper unfolding For example:

$$p(n) = \sum_{N=n}^{\infty} P(N) \frac{N!}{n!(N-n)!} \epsilon^n (1-\epsilon)^{N-n}$$

$$\begin{pmatrix} p(0) \\ p(1) \\ p(2) \\ p(3) \\ p(4) \end{pmatrix} = \begin{pmatrix} 1 & 1-\epsilon & (1-\epsilon)^2 & (1-\epsilon)^3 & (1-\epsilon)^4 \\ 0 & \epsilon & 2\epsilon(1-\epsilon) & 3\epsilon(1-\epsilon)^2 & 4\epsilon(1-\epsilon)^3 \\ 0 & 0 & \epsilon^2 & 3\epsilon^2(1-\epsilon) & 6\epsilon^2(1-\epsilon)^2 \\ 0 & 0 & 0 & \epsilon^3 & 4\epsilon^3(1-\epsilon) \\ 0 & 0 & 0 & 0 & \epsilon^4 \end{pmatrix} \begin{pmatrix} P(0) \\ P(1) \\ P(2) \\ P(3) \\ P(4) \end{pmatrix}$$

matrix is pseudo-singular

We can easily use $\epsilon(N)$, matrix is much more complicated but it is not a big deal.

In general
$$p(n) = \sum_{N=n} P(N)B(n;N)$$

The method works for $\epsilon(N)$

It works very well, statistical errors are under control