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Prelude

• thermal (fluid dynamical) fluctuations important for fluids
undergoing phase transitions, nucleation, showing instabilities, ...

• relevant in micro-engineering, molecular biology, combustive
ignition, ...

• stochastic correlations between fluctuating quantities
→ consider a non-relativistic fluid:
〈δvi (x , t)δvj (x ′, t)〉 = T

ρ δij δ(x − x ′)

• (linearized) fluid dynamics propagates these, e.g. as shear or
sound modes
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+ . . .



Prelude

→ consider the correlation function

Gxyxy
S = 〈{πxy ,πxy}〉ω,k ' ρ2〈{vxvy , vxvy}〉ω,k

→ match this to response function in Kubo-limit (ω → 0)

Gxyxy
R = P + δP − iω(η + δη) + ω2(ητπ + δ(ητπ))

• δP ∼ T Λ3

cutoff-dependent pressure correction

• δη ∼ T ρΛ
η

small η ⇒ large δη (there must be a lower bound on η/n induced
by fluctuations)

• δ(ητπ) ∼ 1√
ω

T ρ3/2

η3/2

for ω → 0 find δ(ητπ)→ ∞⇒ 2nd-order fluid dynamics
inconsistent without fluctuations



Prelude
Landau-Lifshitz-Navier-Stokes fluid dynamics
⇒ add stochastic flux terms to fluid dynamical equations

anisotropic fluid dynamical expansion of an

ultra-cold Fermi gas cloud at unitarity
1d, dilute gas, periodic boundary conditions

• numerics sensitive to discretization of noise 〈ξ2〉 ∝ 1/∆V ∼ Λ3

• correct implementation possible; 3rd-order methods seem to
work best

J.B. Bell et al., PRE 76 (2007) 016708
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Prelude
• event-by-event fluctuations of the net-proton number expected to

signal a critical point (CP) in the QCD phase diagram
• in td. limit: net-baryon number susceptibility diverges at CP
• associated with fluctuations in the chiral order parameter σ

• higher-order fluctuations, 〈(δσ)n〉c ∝ ξm(n), depend stronger on
correlation length ξ

• system created in a HIC is short-lived, spatially small,
inhomogeneous, highly dynamical

• τ ∝ ξz ⇒ critical slowing down, memory effects

⇒ Relativistic fluid dynamics including fluctuations/dissipation!

• final stage processes could wash out critical fluctuation signals:
I isospin redistribution,
I resonance decays, ...

⇒ Can critical fluctuation signals survive resonance decays?

Y. Hatta and M.A. Stephanov, PRL 91 (2003) 102003; M.A. Stephanov, PRD 65 (2002) 096008; ibid. PRL 102 (2009) 032301;
B. Berdnikov and K. Rajagopal, PRD 61 (2000) 105017; M. Nahrgang et al., PRC 84 (2011) 024912; S. Mukherjee et al., PRC 92

(2015) 034912; C. Herold et al., PRC 93 (2016) 021902; M. Kitazawa and M. Asakawa, PRC 86 (2012) 024904; M. Nahrgang et al., Eur.
Phys. J. C 75 (2015) 573



P A R T – I

Recent progress in simulating relativistic

Fluctuating Dissipative Fluid Dynamics

with Yuri Karpenko



Remarks about the critical mode
• at µ 6= 0, σ mixes with the net-baryon density n (and e, ...)
• in a Ginzburg-Landau formalism:

V (σ,n) =
∫

d3x
(

∑
m

[amσm + bmnm] + ∑
m,l

cm,l σ
mnl
)
− hσ− jn

• V (σ,n): flat direction (aσ,−cn) with vanishing curvature at CP
• equations of motion (including the symmetries of V (σ,n)):

∂t σ = −Γ(δV /δσ) + . . . ; ∂tn = γ∇2(δV /δn) + . . .

• eigenfrequencies and -modes:

ω1 ∝ −iΓa ; (1,0)
ω2 ∝ −iγDk2/a ; (−c,a)

→ fast mode
→ slow mode

NJL for Z2-CP

⇒ the diffusive mode becomes the true critical (slow) mode near
the CP in the long-time dynamics

H. Fuji, M. Ohtani PRD70 (2004); M. Stephanov, D. Son PRD70 (2004)



Fluid dynamical fluctuations
Conventional fluid dynamics propagates thermal averages of the energy density,
pressure, velocities, charge densities, etc.

However, ...

• ... already in equilibrium there are thermal fluctuations!

• ... the fast processes, which lead to local equilibration also lead to noise!

Conventional ideal fluid dynamics:

T µν = T µν
eq

+ ∆T µν
visc + Ξµν

Nµ = Nµ
eq

+ ∆Nµ
visc + Iµ

• In second-order fluid dynamics there are relaxation equations for Ξµν, . . . :

uγ∂γΞ〈µν〉 = −Ξµν − ξµν

τπ

with (white) noise correlators in linear response theory

〈ξµν(x)ξαβ(x ′)〉 = 2T [η(∆µα∆νβ + ∆µβ∆να) + (ζ − 2/3η)∆µν∆αβ] δ4(x − x ′)

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Müller, M. Stephanov
PRC85 (2012); J. Kapusta, J. Torres-Rincon PRC86 (2012); C. Chafin, T. Schäfer, PRA87 (2013); P. Romatschke, R. Young, PRA87

(2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); J. Kapusta, C. Young, PRC90 (2014); C. Young, J. Kapusta, C. Gale,
S. Jeon, B. Schenke, PRC91 (2015); K. Murase, T. Hirano, 1304.3243; ibid. 1601.02260
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(2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); J. Kapusta, C. Young, PRC90 (2014); C. Young, J. Kapusta, C. Gale,
S. Jeon, B. Schenke, PRC91 (2015); K. Murase, T. Hirano, 1304.3243; ibid. 1601.02260



Fluid dynamical fluctuations
Conventional fluid dynamics propagates thermal averages of the energy density,
pressure, velocities, charge densities, etc.

However, ...

• ... already in equilibrium there are thermal fluctuations!

• ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics: ⇒ neglect Nµ for now!

T µν = T µν
eq + ∆T µν

visc + Ξµν

Nµ = Nµ
eq + ∆Nµ

visc + Iµ

• In second-order fluid dynamics there are relaxation equations for Ξµν, . . . :

uγ∂γΞ〈µν〉 = −Ξµν − ξµν

τπ

with (white) noise correlators in linear response theory

〈ξµν(x)ξαβ(x ′)〉 = 2T [η(∆µα∆νβ + ∆µβ∆να) + (ζ − 2/3η)∆µν∆αβ] δ4(x − x ′)

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Müller, M. Stephanov
PRC85 (2012); J. Kapusta, J. Torres-Rincon PRC86 (2012); C. Chafin, T. Schäfer, PRA87 (2013); P. Romatschke, R. Young, PRA87
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Fluid dynamical fluctuations - nonlinearities

• correlation functions in linearized fluid dynamics describe noninteracting modes

• if nonlinearities are included→ interaction of modes
→ modification of correlations
→ contributions to transport coefficients, ...

• symmetrized correlator:

Gxyxy
S (ω,0) =

∫
d3xdt ei(ωt−k·x)

〈
1
2
{T xy (t ,x),T xy (0,0)}

〉
• for the shear-shear contribution⇒

Gxyxy
R,shear−shear(ω,0) = − 7T

90π2 Λ3 − iω
7T

60π2
Λ
γη

+ (i + 1)ω3/2 7T
90π2

1
γ3/2

η

P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schäfer, PRA87 (2013); P. Romatschke, R. Young, PRA87 (2013)
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Fluid dynamical fluctuations - 1+1d
• Static ”box” with periodic boundary conditions in relativistic 1 + 1d fluid dynamics

• Initialized at e0 = 10 GeV/fm3 (without fluctuations nothing would happen)

consider time evolution in [fm] of e in [GeV/fm3] for ∆x = 1.0 fm

’box_1d_1236_Qviol_mitIS_test2/outx.dat’ u 2:1:5
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M. Nahrgang, MB, Y. Karpenko, S. Bass, T. Schäfer, work in progress
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Fluid dynamical fluctuations - 1+1d
• Static ”box” with periodic boundary conditions in relativistic 1 + 1d fluid dynamics

• Initialized at e0 = 10 GeV/fm3 (without fluctuations nothing would happen)

consider time evolution in [fm] of e in [GeV/fm3] for ∆x = 0.5 fm
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Fluid dynamical fluctuations - 3+1d
• Static box with periodic boundary conditions in relativistic 3 + 1d fluid dynamics

∂µT µν = ∂µ

(
T µν

eq + ∆T µν
visc + Ξµν

)
= 0

time evolution of the variance 〈(∆e)2〉:
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〈δe(x)δe(x + dx)〉 correlation function:
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• The variance 〈(∆e)2〉 saturates after ∼ 5 fm.

• Fluctuations are large in the computational cell of fluid dynamics⇒ noise
correlated over ∼ 1 fm3 – reproduced.

M. Nahrgang, MB, Y. Karpenko, S. Bass, T. Schäfer, work in progress



Fluid dynamical fluctuations - 3+1d nonlinearities

• Important check: equilibrium expectations for fluctuations and nonlinear effects!
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• Proportionality to 1/V reproduced for the correction to the average and the
variance of energy density in the local rest frame.

• Implementing fluid dynamical fluctuations is important,
but requires a sustained and systematic effort!

M. Nahrgang, MB, Y. Karpenko, S. Bass, T. Schäfer, work in progress



What remains to be done!?

• ...apart from the obvious...
• provide realistic initial conditions for HIC
• provide realistic EoS and transport coefficients
• propagate also net-baryon current with fluctuations in fluid

dynamics
• evolve σ-field within fluid dynamical background by means of an

stochastic Langevin equation or Fokker-Planck equation
→ Should σ-field fluctuations influence the fluid dynamical

evolution?
• make particles from the fluid and evolve them (hadronic stage)

M. Nahrgang et al., PRC 84 (2011) 024912; J. Kapusta and J. Torres-Rincon, PRC 86 (2012) 054911; C. Young, PRC 89 (2014)
024913; S. Mukherjee et al., PRC 92 (2015) 034912; C. Herold et al., PRC 93 (2016) 021902



P A R T – II

Phenomenological study of the

Influence of Resonance Decays on Critical
Fluctuations



Critical fluctuations based on Ising-model EoS

→ need to know equilibrium σ-field fluctuations!

under universality hypothesis:
order parameter magnetization

M(r ,H) = M0Rβθ

with parametric representation

r = R(1− θ2) , H = H0Rβδh̃(θ)

σ-field cumulants:

〈(δσ)n〉c =

(
T
V

)n−1 (∂n−1M
∂Hn−1

)
r

→ valid in scaling regime

• CP located at (r ,H) = (0,0)

• for r > 0 crossover regime

• for r < 0 first-order phase transition
at H = 0

S̃ ∼ 〈(δσ)3〉/〈(δσ)2〉, K̃ ∼ 〈(δσ)4〉c /〈(δσ)2〉

P. Schofield, PRL 22 (1969) 606; R. Guida and J. Zinn-Justin, NPB 489 (1997) 626



Mapping to QCD thermodynamics
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transition region: lattice QCD

chem. FO: P. Alba et al. (2014)
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What do we know?
• Tc,0 = (154± 9) MeV

• chiral crossover curvature
κc = 0.007 . . . 0.02

• chemical freeze-out parameters

What is unknown?
• location of CP in (µB ,T )

• size of critical region

• mapping r (µB ,T ) and
H(µB ,T )

→ one preferred direction for r in CP:
along first-order transition line

Y. Aoki et al., JHEP 06 (2009) 088; A. Bazavov et al., PRD 85 (2012) 054503; O. Kaczmarek et al., PRD 83 (2011) 014504; G. Endrodi
et al., JHEP 04 (2011) 001; C. Bonati et al., PRD 92 (2015) 054503; R. Bellwied et al., PLB 751 (2015) 559; P. Cea et al., PRD 93

(2016) 014507; P. Alba et al., PLB 738 (2014) 305; A. Bazavov et al., PRD 93 (2016) 014512



Coupling to observable fluctuations
• effective interaction of particles with σ-field, e.g. gp σp
• additional critical fluctuation contributions:

δf crit = −
g
T

f 0(1± f 0)
m
E

δσ with 〈δσ〉 = 0

→ critical fluctuations imprinted in net-proton fluctuations
→ magnitude of signal depends on coupling g (and its sign)

M.A. Stephanov et al., PRL 81 (1998) 4816; ibid. PRD 60 (1999) 114028; C. Athanasiou et al., PRD 82 (2010) 074008; J. Thäder et al.
[STAR Collaboration], 1601.00951



Influence of resonance decays
• resonance decay is a probabilistic process→ significant

contribution to fluctuations
• two limiting cases: no coupling to σ-field vs. chiral model inspired

coupling via gR = g
3

mR
mp

(3− |SR |)

→ resonance decays reduce Sσ by ∼ 40% and κσ2 by ∼ 50%

but signal survives!

D. Zschiesche et al., PRC 63 (2001) 025211; V. Dexheimer and S. Schramm, Astroph. J. 683 (2008) 943; J. Thäder et al. [STAR
Collaboration], 1601.00951



What about σ2/M ?

Absolutely no deviation from the HRG baseline seen in the data.
⇒ provides additional important constraints!

J. Thäder et al. [STAR Collaboration], 1601.00951



Conclusions

• qualitative features of the critical point can be studied with
phenomenological models:
→ critical fluctuation signals in net-proton fluctuations are reduced by

resonance decays but survive

• for a realistic dynamical treatment need to apply Fluctuating
Dissipative Fluid Dynamics:
→ in 1+1d ”box”: evolution of fluctuations clearly visible, volume

dependence tested successfully
→ in 3+1d box: expectations for modifications due to nonlinear effects

verified, correlations reproduced

⇒ next: study more realistic expansion scenarios!
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