Critical Point and Conserved Charge Fluctuations in Relativistic Heavy Ion Collisions

Masayuki Asakawa

Department of Physics, Osaka University

With M. Kitazawa and M. Sakaida

October 2016

QCD Phase Diagram

M. Asakawa (Osaka University)

Why Conserved Charge Fluctuations ?

- Their values do not change during the phase transition
- Their values in QGP and Hadron Phase are different
- They change in Hadron Phase only by diffusion

D measure for electromagnetic charge fluctuation

Heinz, Müller, M.A., Jeon, Koch, 2000

- Charge Fluctuation is a well-defined quantity, and can be measured on the lattice
- Lattice results and Effective Model results (equilibrium thermodynamics) are often compared with experimental results

Comparison of Hadron Phase and QGP

Quark-Gluon Plasma

Why Conserved Charge Fluctuations ?

- Their values do not change during the phase transition
- Their values in QGP and Hadron Phase are different
- They change in Hadron Phase only by diffusion

D measure for electromagnetic charge fluctuation

Heinz, Müller, M.A., Jeon, Koch, 2000

- Charge Fluctuation and Baryon Number Fluctuations are well-defined quantities, and can be measured on the lattice
- Lattice results and Effective Model results (equilibrium thermodynamics) are often compared with experimental results

Conserved and Non-Conserved Charge Fluc.

Necessary to consider dynamical evolution of fluctuation!

Conserved Charge

Only diffusion changes the number of charge

relaxation time ~ $\tau \rightarrow \infty$

for $V \to \infty$

Non-Conserved Charge

Charge can change anywhere in the volume

 $\begin{array}{l} \tau \to \mbox{ finite} \\ \mbox{ for } V \to \infty \end{array}$

$\Delta \eta$ Dependence @ ALICE

Freeze-out parameters: lattice meets experiment

In this argument, no rapidity window dependence is taken into account

Time Evolution of Conserved Charge

Variation of a conserved charge in $\Delta\eta$ is achieved only through diffusion

The larger $\Delta \eta$, the slower diffusion

In the $\Delta\eta$ dependence of C.C. Fluctuation, history of system is encoded

$\Delta \eta$ Dependence @ ALICE

Freeze-out parameters: lattice meets experiment

In this argument, no rapidity window dependence is taken into account

Conservation Charge Transport in Hadron Phase

Naively,

Diffusion Equation,

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

Plus Fluctuation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

But it is known stochastic forces for "Markov process for continuum variable(s)" are Gaussian

We will use a discrete formulation

Diffusion Master Equation (DME)

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approximation is needed

Ono, Kitazawa, M.A., PLB 2014

Net Charge Number

Prepare 2 species of (non-interacting) particles

$$\overline{Q}(\tau, \Delta \eta) = \int_{0}^{\Delta \eta} \left(n_{1}(\tau, \eta) - n_{2}(\tau, \eta) \right) d\eta$$

Let us investigate

 $\langle \bar{Q}^2 \rangle_c \quad \langle \bar{Q}^4 \rangle_c$ at freezeout time t

Closer Look: $\Delta \eta$ dependence

Finite Size Effect (Global Charge Conservation)?

C. C. Fluctuation: 0 if the whole system is observed

$$\Rightarrow \left\langle \delta Q^2 \right\rangle_{\text{obs}} = \left\langle \delta Q^2 \right\rangle_{\text{equil}} \times \left(1 - \frac{\Delta \eta}{\eta_{\text{total}}} \right) ?$$

if the whole system is equilibrated (Bleicher, Jeon, Koch)

DME with Reflecting Boundaries

Diffusion from Hadronization to Thermal Freeze-out
 Initial Condition : No Fluctuations

 or Fluctuations in Thermal QGP

Rapidity Window Dependence of Charge Fluctuations

Diffusion + Global Charge Conservation

Global Charge Conservation is important even at LHC

Suppression of Charge Fluctuation observed @ALICE → Global Charge Conservation Fluctuations are NOT Equilibrated!!

Information on

* Fluctuation in QGP * Time Evolution * Diffusion Coefficient ····etc. is encoded Sakaida, Kitazawa, M.A., PRC 2014

In the $\Delta\eta$ dependence of C.C. Fluctuation, history of system is encoded

Critical Fluctuation and $\Delta\eta$ Dependence

Critical Mode = Diffusive Mode

Fujii (2004) Fujii, Ohtani (2005) Son, Stephanov (2005)

Evolution of baryon number density $\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$ $\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \chi_2(t) \delta^{(2)}(1-2)$ $D(t), \ \chi_2(t)$:parameters characterizing criticality

Parametrization of *D* & χ_2

D model-H (3d-Ising) **D** $\chi \sim \xi^{1.96}, D \sim \xi^{-1.044}$

The mapping to (T,µ) / time evolution $\begin{array}{c}
h \\
 & 1D Bjorken expansion \\
 & r \\
 & t
\end{array}$

 $\Box \chi^{\eta}_{\text{QGP}} / \chi^{\eta}_{\text{hadron}} = 0.5$ $\Box \text{ QCD CP at T=160MeV}$ $\Box \text{ kinetic f.o. at T=100MeV}$

Berdnikov, Rajagopal (2000) Stephanov (2011) Mukherjee, Venugopalan, Yin (2015)

Time Evolution 1: No CP

2: Critical Point

D Non-monotonic $\Delta \eta$ dependence manifests itself. Robust experimental evidence of the existence of a peak in $\chi(T)$

3: Critical Point (Narrower Critical Region)

non-monotonic behavior

Peak in

 χ_2 ('_

Critical Fluctuation and $\Delta\eta$ Dependence

3: Critical Point (Narrower Critical Region)

non-monotonic behavior

Peak in

 χ_2 ('_