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What is Density Functional Theory (DFT)?

@ Hohenberg-Kohn: There exists
an energy functional E,_[p] ...

Ev.le] = Falp] + [ 0% veu(x)o(

@ Fyx is universal (same for any
external Vex) = H> to DNA!

@ Useful if you can approximate
the energy functional

@ Introduce orbitals and minimize
energy functional = Egs, pgs

@ Kohn-Sham procedure similar to ‘
nuclear “mean field” calculations 0 2 4 5 8 1
(e.g., Skyrme HF) {tm)



Microscopic Nuclear Structure Methods

@ Wave function methods (GFMC/AFMC, NCSM/FCI, CC, ...)
e many-body wave functions (in approximate form!)
@ V(xq, - ,xa) = everything (if operators known)
o limited to A < 1007 or < 2007 or ???

@ Green’s functions (see W. Dickhoff and D. Van Neck text)
e response of ground state to removing/adding particles
@ single-particle Green’s function = expectation value

of one-body operators, Hamiltonian

@ energy, densities, single-particle excitations, ...

@ DFT (see C. Fiolhais et al., A Primer in Density Functional Theory)

LT of response of energy to perturbations of density J(x)f 1
natural framework is effective actions for composite operators
el = Folp] + Tintlp] (e.9., for EFT/DFT) but also

quantum chemistry MBPT+ approach (Bartlett et al.)

energy functional = plug in candidate density, get out
trial energy, minimize (variational?)

energy and densities (TDFT —> excitations)



Paths to a Nuclear Energy Functional (EDF)

@ Empirical energy functional (Skyrme or RMF)

@ Emulate Coulomb DFT: LDA based on precision calculation
of uniform system E[p] = [ dr &(p(r)) plus constrained
gradient corrections (Vp factors)

e SLDA (Bulgac et al.) :ig: J— ]
for cold atoms 0 x WEF88
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@ RG approach (J. Braun, from Polonyi and Schwenk, nucl-th/0403011)
@ EDF from perturbative chiral interactions + DME (Kaiser et al.)
@ Constructive Kohn-Sham DFT with RG-softened V,grr's




How Can We Use EFT’s To Constrain DFT’s?

@ Constraining the nuclear EOS from fits of energy functionals to
nuclei involves uncontrolled extrapolations at present. At low
densities, where the pionless EFT is applicable, there are close
connections to cold-atom physics. At higher densities
inadequately constrained many-body forces are a serious
concern. How can EFT help to provide much-needed controlled
extrapolations and theoretical error bars?

@ Since DFT can be cast in the form of an effective action
approach, it is immediately compatible with EFT in principle. How
do we implement this in practice? E.g., how to do power counting
for the energy functional for a given EFT?

@ What are the possible EFT’s for nuclear matter? E.g., are
nucleon-only degrees of freedom adequate? What is the role of
pions and chiral symmetry? Can we write an EFT around the
Fermi surface? Does Pauli blocking make the EFT ??(more?)
perturbative? Is there a covariant EFT that can explain and
improve the successes of “relativistic mean field”
phenomenology?



Issues with Empirical EDF’s

Density dependencies might be too simplistic

Isovector components not well constrained

No (fully) systematic organization of terms in the EDF

Difficult to estimate theoretical uncertainties

What'’s the connection to many-body forces?

Pairing part of the EDF not treated on same footing

andsoon...

= How can EFT help?



Comparing LDA Dilute and Skyrme Functionals
@ Skyrme energy density functional (for N = 2)

3
Elp,7,d] = /d3 { + gtop + E(SH +5b)pT+ 64(9t1 512)(Vp)2

1
— §WQ,OV J+ ﬁtspﬂa —I—}

@ Dilute prd energy density functional for v = 4 (Vixema = 0)
Elp,7,J] —/d3 { + = Cop +—(302+502)p7+ 1(9C — 5C5)(Vp)?
_° 727/3 C 83y p o3
4C pV - Jd + C 2MCO,0 +1600p + }
@ Same functional as LDA dilute Fermi gas with f; — C;

o Is Skyrme missing non-analytic, NNN, long-range (pion),
(and so on) terms? Are proposed extensions enough?

@ Isn’t this a short-distance “perturbative” expansion?



Nuclear Energy Density Functional
We consider the EDF in the form,

E = fd3r7{(r),

where the energy density H(r) can be represented as a sum of the
kinetic energy and of the potential-energy isoscalar (£ = 0) and isovector

(t = 1) terms,
2

H(r) = ;—ng + Hol(r) + Hi(r),
which for the time-reversal and spherical symmetries imposed read:
Ht(T‘)ZC{'Pf + C{ ps1e + CtAPPtAPt + %ijsz + CtVJPtV - Jp.
Following the parametrization used for the Skyrme forces, we assume

the dependence of the coupling parameters C{ on the isoscalar density

Po as:
C? = Cl{ + Chpo

The standard EDF depends linearly on 12 coupling constants,
ct, Cf, C7, CA?, CJ, and CY/,

t0? tD? t
for t = 0 and 1.
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How well can we describe masses with 12
coupling constants?
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How to extend the nuclear energy density functional
beyond the current standard form?

Quest for the spectroscopic-quality functional

* I. Density dependence of all the coupling constants

] e )
Psat Psat

* II. Derivatives of higher order up to N3LO:

net

Ctﬂ’t(po’ pl) — C:ﬂ 1 + a:n

+ 6;“

Prinyy = ((e"‘)r ((E”)L,Ok)J,)J for k=0,1 and m+n <6

* ITI. Products of more than two densities, for example:

p’r?, prlAp,...
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Power Counting Estimates Work for Dilute DFT

energy/particle

f=]

@ Scale contributions according to average density or (kg)
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@ Reasonable estimates = truncation errors understood



Power Counting in Skyrme and RMF Functionals?

@ Old NDA analysis: 1000g T s o
H : 500; natura = € ]
[Friar et al., rif et al.] . ® Skyrme " :
Y n L @ RMFT-II p" net |
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Long-Range Chiral EFT N forees
—> Enhanced Skyrme

LO (%) >< }7777‘ o o

@ Add long-range (m-exchange)
contributions in the density X}H

3N forces 4N forces

matrix expansion (DME)
@ NN/NNN through N2LO NLO (§)
derived [SKB,BG]

@ Refit the Skyrme parameters
@ Test for sensitities and H‘

improved observables

(isotope chains) - } ><>K
@ Spin-orbit couplings from 27

3NF particularly interesting

@ Can we “see” the pion in VLo () ><+H‘ }i:‘, ]
medium to heavy nuclei?




Observables Sensitive to 3N Interactions?

@ Study systematics along isotopic chains
@ Example: kink in radius shift (r?)(A) — (r?)(208)

Pb isotopes .
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@ Associated phenomenologically with behavior of spin-orbit
@ isoscalar to isovector ratio fixed in original Skyrme

@ Clues from chiral EFT contributions?
o Kaiser et al.: ratio of isoscalar to isovector spin-orbit



Scales in Nuclear Matter
@ Extrapolation from finite nuclei to N = Z matter:
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National Laboratory

Towards the optimal parameters of a given functional
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Chiral Dynamics of Nuclear Matter
Munich Group (Kaiser, Fritsch, Weise, ...)

@ Basic idea: ChPT loop expansion becomes EOS expansion:
E(ke) =Y KE fo(ke/ Mg, /M) [A = Ma — My ~ 300 MeV]
n=2

@ 1stpass: N's and n’'s = count kg’s by medium insertions

G D * m conmerterm

e Saturation from Pauli-blocking of iterated 17-exchange
e Problems with single-particle and isospin properties and . ..

@ 2nd pass: include TNA dynamics: A+ """"" + "-3'-'-'-'-'-'-7- N *7\,><7\,

&, QCQ@O‘
QOQOMO



Chiral Dynamics of Nuclear Matter (cont.)
Munich Group (Kaiser, Fritsch, Weise, ...)

@ 3-Loop: Fit nuclear matter saturation, predict neutron matter
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@ Substantial improvement in s.p. properties, spin-stability, . ..

@ Issues for perturbative chiral expansion of nuclear matter:
@ higher orders, convergence? power counting?
o relation of LEC’s to free space EFT

@ Apply DME to get DFT functional



Near-Term Roadmap for Microscopic Nuclear DFT

@ Use a chiral EFT to a given order (e.g., E/M N3LO below)
@ Soften with RG (evolve to A ~ 2fm~" for ordinary nuclei)

@ NN interactions fully, NNN interactions (3NF) approximately

@ Generate density functional using DME in k-space
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@ MBPT organization, not chiral power counting



Orbital Dependent DFT (oEp, oPwm, ...) [J. Drut, L. Piatter]

@ Construct expansion for iy [p, 7,4, .. .]; densities are sums
over orbitals solving from Kohn-Sham S-eqn with Jy(r), ...

@ Self-consistency from J(r) = 0 = Jo(r) = éTinc[p, - . .]/dp(r)
@ i.e., Kohn-Sham potential is functional derivative of interacting

energy functional (or E,.) wrt densities
e How do we calculate this functional derivative?
@ Approximations with explicit p(r) dependence: LDA, DME, ...
@ Orbital-dependent DFT — full derivative via chain rule:

_ 5rim[¢a75a] _ / (5J()(|'/) { 17 |:5¢L(rll) 6rint ]
S = —5,m / O 2@; / I 57 sotny T OC
5&‘@ 8Fim
5Jo(r/) O0cq }

@ Solve the OPM equation for Jy using xs(r, 1) = dp(r)/5Jo(r')
/dsr xs(F F) Jo(F) = A(r)

o Ax(r) is functional of the orbitals ¢., eigenvalues ¢, and G9



DFT and Effective Actions (Fukuda et al., Polonyi, ...)

@ External field <= Magnetization

@ Helmholtz free energy F[H)|
<= Gibbs free energy I'[M]

Legendre
transform

. 3F[M] ground 5F[M] .
M state oM |,

— [[M] = F[H] + HM

H

source magnet



DFT and Effective Actions (Fukuda et al., Polonyi, ...)

@ External field <= Magnetization
@ Helmholtz free energy F[H)|

<= Gibbs free energy I'[M] =2
e B source magnet
Legendre v _ FiH)+ HM J
transform kS

. 3F[M] ground 5F[M]

oM state oM =0

H

My
@ Partition function with sources that adjust densities:
Z[J] = e WM ~ Tre#H+7)  —  path integral for W[J]
@ Invertto find J[p] and Legendre transform from J to p:
_swWiY] B B _or[e]
P00 = 5700 Mpl = Wil / Jp and Jx) = -5

= [[p] x energy functional E[p], stationary at pg(X)!




Partition Function in 5 — oo Limit [see zinn-Justin]
@ Consider Hamiltonian with time-independent source J(x):
H(J) = H+/Jw¢
@ /fground state is isolated (and bounded from below),
o™ = &5 [10)(0] + O(e~E=5)]
@ As 3 — oo, Z[J] = ground state of IfI(J) with energy Eq(J)
2l = e WM < Tre PR — Ey(J) = Jim A log Z[J] = %W[J]

p
@ Substitute and separate out the pieces:

Eo() = (HW))u = (F)a+ [Swt)s = (Fya+ [Jpt0)
@ Expectation value of Hin ground state generated by J[p]

(Hy = Eo(J) /pr—nm



Putting it all together ...

ofp] y—o rp]

— -0
p(x) dp(x) Pas(X)

ST = (), 0 6 and () =

= For static p(x), I'[p]  the DFT energy functional Fyx!

@ The true ground state (with J = 0) is a variational minimum
e So more sources should be better! (e.g., Ip, 7,4J,---])
e [For Minkowski-space version of this, see Weinberg, Vol. II]

@ Universal dependence on external potential is trivial:
ol = Wil [ = Woald+ vl [[(+0) =Vl p = Tucalpls [ v

e But functionals change with resolution or field redefinitions
— only stationary points are observables

@ If uniform, can find spontaneously broken ground state;
if finite system, must deal with zero modes



Kohn-Sham DFT for v, = Vi3o Harmonic Trap




Kohn-Sham DFT for v, = Vi3o Harmonic Trap

@ Interacting density in Vyjo = Non-interacting density in Vs
@ Orbitals {¢j(x)} in local potential Vks([p], X)

A
[~ V2/2m + Vis(X)]thj = eipi = p(X) = > [1hi(%)[?
e

e Find Kohn-Sham potential Vks([p], x) from 6E,_[p]/dp(X)
e Solve self-consistently



Construct W[J] and then I'[y] order-by-order

@ Diagrammatic expansion (e.g., use EFT power counting)

Lo: { ) NLO;@ + OGO

@ Inversion method — Split source J = Jy + J1 + ...
@ Jy chosen to get p(x) in noninteracting (Kohn-Sham) system:

[ 23

rap

e cf. H= (Hp + U) + (V — U) with freedom to choose U
e Orbitals {¢;(x)} in local potential Vks([p],X) = propagators
A

[-V2/2m + Vis(Q)]ehi = ey = p(x) = > [i(x)?

i=1

—

\' J

trap “0

@ Self-consistency from J(X) = 0 = Jp(X) = 0T inc[p]/Ip(X)



