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What’s the point of an effective (field∗) theory?

• no model assumptions – just low-energy degrees of freedom and
symmetries
• estimates of errors and theory will tell you if it breaks down

(no convergence)
• consistency of effective operators and interactions
• effective coupling constants are “universal”
→ links between different low-energy phenomena

(ci ’s: πN scattering↔ TPE forces)
→ bridges between low-energy observables and underlying theory

(scattering lengths: scattering processes↔ lattice QCD)

∗No creation/destruction of particles→ just effective quantum mechanics
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How does it work?

• systematic expansion in powers of ratios of low-energy scales Q
(momenta, mπ, . . . ∼ 200 MeV)
to scales of underlying physics Λ0

(mρ, MN , 4πFπ, . . . & 700 MeV?)

• interactions with ranges ∼ 1/Λ0 not resolved at scales Q
→ replaced by contact interactions
• iterations (loop diagrams) usually infinite
→ need to renormalise
• works provided we have a consistent expansion

(otherwise trying to renormalise an infinite number of constants,
simultaneously)
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Where does it work?

Works well for purely pionic and πN systems

• pions ∼ Goldstone bosons of hidden chiral symmetry
– strong interactions weak at low energies

→ chiral perturbation theory
• terms organised by naive dimensional analysis

aka “Weinberg power counting”
(simply counts powers of low-energy scales – momenta and mπ)
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What’s the problem with building an EFT for nuclear forces?

• over-reliance on appeals to authority (“Weinberg said . . . ”)
• tendency to circle the wagons and shoot inwards
• nucleons interact strongly at low-energies
• simply counting powers of low-energy scales – perturbative
• works for weakly interacting systems (eg pions and photons)

but cannot generate bound states (nuclei!)
• need to treat some interactions nonperturbatively
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Basic nonrelativistic loop diagram

M
(2π)3

∫ d3q
p2−q2 + iε

=−i
M p
4π

+ analytic

• of order Q [Weinberg (1991)]
(come back to divergences later)
• better than relativistic case, Q2

• but potential starts at order Q0

(OPE and simplest contact interaction)
• each iteration suppressed by power of Q/Λ0

→ still perturbative (provided Q < Λ0)

−p p

−p p

−q q
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Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied [van Kolck; Epelbaum and Meissner; Machleidt . . . ]

and even more widely invoked [≥ 9 talks here, so far]

• but no clear power counting for observables
• resums subset of terms to all orders in Q

and some of these depend on regulator
• not necessarily a problem if these terms are small
• but what if we rely on them to generate bound states?
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How can we iterate interactions consistently?

Identify new low-energy scales

• promote leading-order terms to order Q−1

(cancels Q from loop→ iterations not suppressed)
• can, and must, then be iterated to all orders

(all other terms: perturbations)

Examples of new scales

• S-wave scattering lengths 1/a . 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

→ for p << mπ: “pionless EFT” ≡ effective-range expansion
[Schwinger (1947); Bethe (1949)]
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One-pion exchange

• important for nuclear physics at energies ∼ 100 MeV
• order Q0 in chiral counting
→ treat as a perturbation [Kaplan, Savage and Wise (1998)]
• S waves: series coverges slowly, if at all
• OPE “unnaturally” strong

(cf successes of older phenomenology and Weinberg’s scheme)
• strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

→ another low-energy scale?

• ≥ 4 proposed schemes, ∼ 15 years of acrimonious debate
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How do we analyse scale-dependence of
strongly-interacting systems?

General tool for this: the renormalisation group

• scattering by contact interactions is ill-defined in QM
• couple to virtual states with arbitrarily high momenta
• example: basic loop diagram for S waves behaves as

M
(2π)3

∫ d3q
p2−q2 + iε

∼− M
2π2

∫
dq for large q

(linear divergence)
→ need to renormalise
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Procedure

• identify all relevant low-energy scales Q
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• cut off at arbitary scale Λ between Q
and Λ0 (assumes good separation of
scales)
• “integrate out” physics by lowering Λ

(don’t even think about taking Λ to
infinity!)
• demand that physics be independent

of Λ (eg T matrix)

• rescale: express all dimensioned quantities in units of Λ
(potential and all low-energy scales)
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Follow flow of effective potential as Λ→ 0

→ look for fixed points
• rescaled theories independent of Λ
• correspond to scale-free systems
• endpoints of RG flow

• stable fixed point • unstable fixed point
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Expand around fixed point using perturbations that scale like Λν

• ν < 0 relevant or superrenormalisable
(unstable; eg masses in QFTs)
• ν > 0 irrelevant or nonrenormalisable

(stable; eg mesonic ChPT)
• ν = 0 marginal or renormalisable

(→ lnΛ scale dependence; eg couplings in QED, QCD)
→ EFT with power counting: Qd where d = ν−1

Λ is highest acceptable low-energy scale

• order Q
• rescaling→ power of Λ counts low-energy scales
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What does the RG tell us about short-range potentials?

Two fixed points

• trivial V = 0→ free particles
• nontrivial [Birse, McGovern, Richardson (1998)]
→ “unitary limit” (bound state at threshold, a→ ∞)
• both scale-free systems

Near trivial fixed point V (p) = C0 + C2 p2 + C4 p4 + · · ·
• energy-dependent: on-shell momentum p =

√
ME

(come back to momentum dependence)
• p2n are RG eigenfunctions
• orders given by naive (Weinberg) counting: Q0, Q2, Q4, . . .
• coefficients C2n related to energy expansion of on-shell K matrix

(like T matrix but standing-wave bc’s – real, analytic)
• appropriate EFT for thermal np scattering
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Nontrivial fixed point

V0(p,Λ) =− 2π2

MΛ

[
1− p

2Λ
ln

Λ + p
Λ−p

]−1

(sharp cutoff)

• order Q−1 (so must be iterated)
• exactly cancels basic loop integral in LS equation

→ T (p) = i
4π

M p
(unitary limit)

Expanding around this point

V (p,Λ) = V0(p,Λ) + V0(p,Λ)2 M
4π

(
− 1

a
+

1
2

re p2 + · · ·
)

• factor V 2
0 ∝ Λ−2 promotes terms by two orders compared to naive

expectation: Q−2, Q0, . . . [van Kolck; Kaplan, Savage and Wise]
• coefficients of perturbations directly related to observables:

effective-range expansion
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Enhancement follows from form of wave functions as r → 0

• unitary limit→ irregular solutions: ψ(r) ∝ r−1 (S wave)
• cutoff smears contact interaction over range R ∼ Λ−1

→ need extra factor Λ−2 to cancel cutoff dependence from
|ψ(R)|2 ∝ Λ2 in matrix elements of potential

Other partial waves

• wave functions ψ(r) ∝ rL for small r
(assuming no low-energy bound state – regular solution)
• extra factor Λ2L needed in potential
→ leading term in L-th partial wave of order Q2L

(Weinberg counting: powers of Q from derivatives of δ-function)
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Three-body systems

Attractive: 3 bosons or 3 distinct fermions in unitary limit (triton)

• naive dimensional analysis→ leading contact term of order Q3

• next-to-naive expectation: promoted to Q1 in unitary limit
(enhancement of two-body wave functions at small r )
• as hyperradius R→ 0 wave functions behave like

ψ(R) ∝ R−2±is0 s0 ' 1.006 [Efimov (1971)]

→ leading three-body force promoted to order Q−1

• marginal perturbation associated with limit cycle of RG
[Bedaque, Hammer and van Kolck (1999)]

Repulsive: 1 distinct and 2 identical fermions in unitary limit
(alkali atoms or neutrons)

• hyperradial wave functions ψ(R) ∝ R−2+2.1662

→ leading three-body force of noninteger order Q3.3324
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How do pion-exchange forces affect the power counting?

Treat λNN as low-energy scale→ iterate OPE

Central OPE (spin-singlet waves)

• 1/r singularity – not enough to alter power-law forms of wave
functions at small r , even if iterated
• L≥ 1 waves: weak scattering→Weinberg power counting
• 1S0: similar to expansion around unitary fixed point
• except for extra log divergence ∝ m2

π/λNN

not distinguishable in practice from leading contact term
→ KSW-like power counting
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Tensor OPE (spin-triplet waves)

• 1/r3 singularity
• but higher partial waves protected by centrifugal barrier
• above critical momentum waves resolve singularity
→ OPE not perturbative
• L≥ 3: pc & 2 GeV→Weinberg counting OK
• L≤ 2: pc . 3mπ → new counting needed

[Nogga, Timmermans and van Kolck (2005)]

• wave functions ψ(r) ∝ r−1/4 multiplied by either sine or
exponential function of 1/

√
λNNr

→ leading contact interaction of order Q−1/2 in P, D waves
(very weakly irrelevant)
and of order Q−3/2 in 3S1–3D1 (relevant)
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Three-body forces

Two-pion exchange

• purely long-range interactions→ not renormalised
→ start at order Q3

One-pion exchange (“cD”)

• contains two-body contact vertex (N†N)2∇π

• counting shifted in same way as S-wave contact interactions
→ promoted to order Q1 in 1S0

and to order Q3/2 in 3S1

Contact interaction (“cE ”)

• counting still not known:
need to solve 3-body problem with 1/r3 potentials
• expect to be promoted, but by less than in pionless EFT
→ order Qd , 0 < d < 3?
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So, how should we build an effective Hamiltonian?

To order Q3 (N2LO in Weinberg’s counting)

Order NN NNN
Q−1 1S0, 3S1 C0’s, LO OPE

Q−1/2 3PJ , 3DJ C0’s
Q0 1S0 C2

Q1/2 3S1 C2

Q1 1S0 CD0 OPE
Q3/2 3PJ , 3DJ C2’s 3S1 CD0 OPE
Q2 1S0 C4, 1P1 C0,

NLO OPE, LO TPE
Q5/2 3S1 C4

3PJ , 3DJ CD0’s OPE
Q3 NLO TPE 1S0 CD2 OPE, LO 3N TPE
Q? CE

• orange terms absent from “N2LO chiral potential”

• red terms absent from “N3LO”

• order Q−1: have to iterate, order Q−1/2: may be better to
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What does a finite cutoff do?

• regulates divergences
• also introduces artefacts ∝ Λ−n

(except for dimensional regularisation)
• suppose only have expansion of effective potential above

V (p,Λ) =− 2π2

MΛ
− π3

MΛ2a
+

π3

2MΛ2 re p2− 2π2

MΛ3 p2 + · · ·

• last term ∝ p2 but of order Q−1 (really part of fixed point)
• dominates over effective range term if Λ < Λ0 ∼ 1/re

→ theory breaks down at momentum scale Λ not Λ0

size of errors due to truncation determined by 1/Λ not 1/Λ0

• keep Λ as large as possible: Λ & Λ0
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What about momentum dependence?

Momentum-dependent perturbations (off-shell form of potential)

• trivial FP: same order as corresponding energy-dependent ones
→ no cost to trading energy- for momentum-dependence

(field redefinition or “using the equation of motion”)
• unitary FP: one order higher
→ remove energy dependence only by taking unnaturally large

coefficients for off-shell dependence

Possible issues for purely momentum-dependent potentials

• unnaturally strong off-shell behaviour
→ will affect other effective operators, 3-body forces, . . .
• off-shell T matrix not RG invariant

(cf Vlow−k derived from invariance of half-off-shell T matrix)
→ no clear power counting for potential or other operators
• probably not problems provided Λ is kept large: Λ & Λ0
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Can I take my cutoff to infinity now?

Yes, but only if you keep your hands clean and respect the counting

• renormalise all potentially divergent integrals
• iterate all fixed-point or marginal terms, order Q−1

• do not iterate irrelevant terms, order Qd with d ≥ 0
• otherwise . . .
→ if very lucky, might discover a new power counting

eg tensor OPE in low partial waves
[Nogga, Timmermans and van Kolck]

→ more generally, lose any consistent counting
eg effective-range term in short-range potential
[Phillips, Beane and Cohen (1997); and many others]
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Can I iterate my full potential?

Yes, but only if you are very careful . . .

• resumming subset of higher-order terms
• without the counterterms needed to renormalise them
• dangerous: can alter form of short-distance wave functions

and destroy power counting (or, at best, change it)
• but problems don’t arise, provided higher-order terms are small
• general way to ensure this: keep cutoff small, Λ < Λ0
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Combining EFT and standard many-body methods

→ tension!

• desire to minimise artefacts, esp for momentum-dependent
potentials→ Λ & Λ0

• desire to plug full potential into dynamical equation→ Λ < Λ0

→ one way out: take the largest cutoff you dare (just below Λ0)
and stick with it?
• but can’t then check for cutoff independence

or use cutoff dependence to estimate errors
• already see examples of this in potentials of Epelbaum and

Meissner, Entem and Machleidt: Λ∼ 500−600 MeV
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Where does all this leave us?

Clear power counting rules for most partial waves, with iterated OPE

• controlled by forms of wave functions as r → 0
• in general, not naive dimensional analysis!
• what is counting for 3-body forces in presence of tensor OPE?
• critical momenta for tensor OPE in 3PJ , 3DJ waves with mπ 6= 0?
• is counting same for waves where tensor OPE is repulsive?

Contact interactions directly related to “observables” (phase shifts)

• distorted-wave K matrix K̃ (p) =− 4π

M p
tan
(
δPWA(p)−δOPE(p)

)
• either DWBA: expand K̃ (p) in powers of energy (peripheral w’s)
• or DW effective-range expansion: expand 1/K̃ (p) (S waves)

In S waves with low-energy bound/virtual states (close to unitary limit)

• energy dependence is lower order than momentum dependence
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Uses of EFT potentials in many-body calculations torn between

• keeping cutoff large to minimise artefacts,
especially if potential is forced to be energy-independent
• and keeping cutoff small so that full potential can be iterated,

without large higher-order terms destroying the power counting
→ leaves only a narrow window: Λ at or just below Λ0

• loses much of power of EFT: ability to check cutoff independence,
or to use cutoff dependence to estimate theoretical errors

• can’t have it all!
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