Searching for the Particle Nature of Dark Matter Saarching for the Darticle laboratory, and the font is modern, clean and friendly.

Anthony G Williams University of Adelaide Concept Progress Status Conclusions

CoEPP & CSSM

COLOR AND

Australian Research Council Australian Government

SABRE

Ernest Henley - Memories and Influence

- Reception at Ernie & Elaine's home 1986 warm and welcoming
- Symmetry as a tool intelligent and insightful
	- Isospin;
	- Charge symmetry breaking (CSB);
	- Chiral symmetry;
	- Parity;

SABRE

 \mathcal{U}

Swinburne University

 Λ

- Time reversal, CP violation;
- Influence on physics research
- CSB, chiral symmetry, NSA, strangeness in proton;
	- Lorentz invariance Dyson Schwinger Equations, Bethe-Salpeter equations;
	- Gauge invariance Lattice gauge theory, lattice QCD
- <u>Darland</u> and a maze surrounding a central truth. The colour \sim Symmetry & model building - physics Beyond the Standard Model (BSM) and Dark matter - how do we extend the SM?
	- Major symmetry question today: What is the particle mature of DM?
- Where does DM fit? $(SU(3)_c \times SU(2)_L \times U(1)_Y)$ with DM \subseteq ???

Evolution of the Universe

Symmetry in Subatomic Physics, Sept 2018

3

Evidence for Dark Matter (DM)

• DM consistent with: Cosmic Microwave Background (CMB) structure; large scale a maze surrounding computer spools; revolving computer spools; revolving computer spools; revolving computer s visible matter can explain; the understanding of the Bullet cluster; etc. structure formation in the early universe; structure of galactic clusters; spiral galaxy rotation curves; why we see more gravitational lensing than the observed

Evidence for Dark Matter from Bullet Cluster

bow-shaped shock wave in smaller cluster; Two clusters of galaxies moving apart after collision (smaller is to the right of larger) -

PStrictly speaking the smaller right-hand cluster is the Bullet Cluster;

PHYSICS LAB The two clusters contain:

Visible stars: moved through each other largely unaffected;

 $e.m. \Rightarrow$ heated and slowed (visible in X-rays); [©] Gas and dust: is most of the ordinary (hadronic) matter in clusters, interacted through

Q Dark Matter: weak lensing contour map shows most mass moved straight through and Concept Progress Status Conclusions much more mass than due to stars \Rightarrow most mass invisible and weakly interacting; Best evidence to date of Dark Matter interacting weakly with itself (8σ significance).

Content of the Universe

- Dark energy increasingly dominates over time;
- Compare universe today at age approximately 14 billion years after Big Bang vs universe at age of 380,000 years.

Lambda-CDM Model

- The ΛCDM model parameterizes the Big Bang model where: \bigcirc
	- General relativity is assumed correct for cosmological scales;
	- There is a cosmological constant "Λ";
	- Dark Matter included and is cold in the present day (CDM): \bigodot
		- Cold: most Dark Matter particles moving slowly c.f. light speed;
		- Dark: interacts via e.m. *very* weakly or not at all;
		- Matter: physical substance since it interacts gravitationally;
- ΛCDM is the simplest model that appears consistent with:
	- The Cosmic Microwave Background;
- Large scale structure of galaxy distribution;
	- UNDERGROUND H, Deuterium, He, Li abundances;
	- PHYSICS LAB Accelerating expansion of the universe as determined from distant galaxies and supernovae;
- Hot Dark Matter would smear out large scale structure of galaxies \Rightarrow not considered viable at this time.

Expected properties 8f DM properties of dark matter

- what do we think we know?
	- long‐lived
		- survived from CMB scales to now, with very little loss in density
	- not baryonic
		- **BBN and ACDM**
	- dark
		- haven't seen it!
		- tight constraints on electromagnetic coupling from structure formation
	- not charged under QCD
		- otherwise, would bind with nuclei to form heavy isotopes
		- tight bounds
	- 80% of all matter
		- rotation curves, CMB, BBN
	- $\rho \sim 0.3$ GeV/cm³ near earth (from rotation curve of Milky Way)
	- cold (non-relativistic)
		- from structure formation, rotation curves

Searches for Dark Matter

direct detection

thermal freeze-out (early Univ.) indirect detection (now)

minimize the cosmic **PHYS** ray background Our focus here is on **direct detection** of Dark Matter deep underground to

production at colliders

Dark Matter Wind

- Dark Matter (e.g., Weakly Interacting Massive Particles WIMPs) are expected to form an approximately static halo around the galaxy (shown in blue); Is there small scale structure, turbulence?
- (aprpoximate direction is from the direction of Cygnus); and a maze surrounding a central truth. The colourway is cool and suggests a As the spiral galaxy rotates, the Sun experiences a wind of DM particles
- passing through the earth changes accordingly. As the earth rotates around the sun, the velocity of the Dark Matter wind

Direct detection strategies

For typical low-energy scattering, DM scatters coherently from entire nucleus

• The direct detection of Dark Matter can take place through their interaction with nuclei inside a detector

The nuclear recoiling energy is measured

- Ionization on solids
- Ionization in scintillators (measured by the emmited photons)
- Temperature increase (measured by the released phonons)

Problems

- Very small interaction rate
- Large backgrounds (experiments must be deep underground)
- Uncertainties in the DM properties in our galaxy

Direct deterationeteremineures **Araimpretepremingeners**

- many experiments with different targets, measurement strategies
- basic points

SABRE

 \mathcal{U}

Swinburne University

 Λ

- dark matter scatters off nuclei
	- looks similar to neutron scattering
- would like to distinguish nuclear recoils from electron recoils
	- can try to use multiple signals from detector
- event spectrum determines mass, event rate determines cross‐section
- **VIBRATION** This concept is high tech, providing a combination of a focal point and surface OVERVIEW – background often comes from

Blas Cabrera

Experimental issues experimental issues

- energy threshold
	- where you can cut out bgd
	- if using multiple signals, where they're each large enough
	- makes low‐mass difficult
- need to scale from the signal you measure to the recoil energy **endoming the velocity distribution uncertainties**
- \mathcal{S} STAWELL UNDERGROUND \mathcal{S} – quenching factor
	- uncertainty affects mass determination \overline{a} determination
	- form factor uncertainties
- especially important when especially important when

comparing to collider, indirect

collider indirect

collider indirect
- all detectors will have a recoil \bullet spectrum depends on m_x only through reduced mass
	- $-$ comes in through E_{max}
		- for $m_x \gg m_A$, reduced mass independent of m_x
		- if $F_A(E_{\text{max}})$ \ll 1, can't "see" E_{max}
	- can't read off m_x from spectrum
	- - recoil energies depend on v
		- events above threshold may be
			- deviations can have a big effect on rate
		- important for comparing to collider, indirect

DAMA/LIBRA enigma

Time (day) Simplest assumptions => inconsistent with all other experiments; No known backgrounds appear to be able to explain it.**Concept Progress Status Conclusions**

Symmetry of the Symmetry Subatomic Control of the Symmetry (Note: DSNB = Diffuse Supernova Neutrino Background)

SABRE in the Stawell Underground **Physics Laboratory(SUPL) of into the stawn and stay of the earth from a tunnel computer spools; revolving computer spools; revolving co** and a maze surrounding a maze surrounding a central truth. The colour way is concluded a central truth. The co

COLOR AND **Concept Progress Status Conclusions** Temporary hut - SUPL under construction

Australian Research Council Australian Government

SABRE

SUPL - Stawell Underground Physics Laboratory

SUPL Floor Plan - initial phase **Concept Progress Status Conclusions**

Confirming or Refuting DAMA

- Is DAMA's signal some seasonally varying background or is it DM or does it interact differently with different detector materials or something else?
	- **Need Southern Hemisphere** perspective -**Seasonal background would be opposite phase; DM signal would be** same phase.
	- Need ultrapure NaI detectors; extremely low background;
	- Need similar conditions and experimental set up in North and South Labs.
- via very high crystal purity and active rejection of background through STAWELL placing the NaI(TI) detector inside a liquid scintillator veto. • Sodium-iodide with Active Background REjection (SABRE) experiment: Same target as DAMA (i.e., Thallium doped NaI cystals), lower background
- wind b laboratory, and the font is modern, clean and friendly. PHYSICS LAB **Concept Progress Status Conclusions** • **CYGNUS experiment:** If direct detection experiments hit the (isotropic) neutrino floor before DM detected, then in future may differentiate DM wind by directionality, e.g., a future CYGNUS experiment to study nuclear recoil direction using Time Projection Chambers (TPCs). CYGNUS experiment global R&D effort is ongoing.

SABRE Collaboration

Symmetry in Subatomic Physics, Septing australian and the Subatomic Physics, and the College of ADELAIDE 20

SABRE Strategy

- **Lower Background**
	- **NaI(Tl)** crystals with **higher purity** than DAMA/LIBRA
	- Lower-radioactivity enclosure & PMTs.
	- **Active scintillator veto** to reduce internal and external background events;
- STAWELL UNDERGROUND PHYSICS LABORATORY • Use Pulse Shape Detection (PSD) to help identify and eliminate known background (non-DM) events.
	- STAWELL PHYSICS LAB PLC **•** Lower energy threshold
		- **High QE** Hamamatsu PMTs directly coupled to NaI.
- PSD based DAQ and data analysis, improved background \bullet measurements via AMS, improved quenching factors.

Ultra-pure NaI(TI) Crystals- Frank Calaprice (Princeton)

Ultrapure NaI:Tl Target Detector

Intrinsic radioactivity limits WIMP sensitivity. SABRE has made the most radiopure NaI:Tl to date.

- 'Astrograde' powder (Sigma Aldrich).
- Carefully-developed powder preparation and growth protocols (Princeton + RMD).

Lower radioimpurity than DAMA. Production growth underway. High QE + low background PMTs: 1 keV threshold desian

VIBRATION THE CONCEPT IS HIGH THE CONCEPT IS A FOCAL POINT AND THE CONCEPT IS A FOCAL POINT AND THE CONCEPT IS AN concentric rings. This style implies several relevant themes: the perspective relevant themes: the perspective of looking down a tunnel (into the earth from above); revolving computer spools; and a maze surrounding a central truth. The colourway is cool and suggests a

OVERVIEW

Colour

laboratory, and the font is modern, clean and friendly.

Liquid scintillator veto

Liquid Scintillator Veto

External background tagging

Muons, spallation neutrons, etc.

Intrinsic background tagging

- Correlated gammas from decays
- $40K$ is especially important

STAWELL UNDERGROUND PHYSICS LABORATORY Radiopure Shielding

- SABRE North: Borexino's pseudocumene-based liquid scintillator
- SABRE South: Linear alkylbenzene-based LS, and a maze surrounding a central truth. The colourway is cool and suggests a laboratory, and the font is modern, clean and friendly. ex-CTF purification **Exercity Internal Act of Exercise** 20, and the United Scintillator

SUBATOOMI

23

SABRE PoP Design

 \mathcal{U}

Swinburne University

 Λ

- **Proof of principle** (LNGS): 5-kg ultra low background Na(Tl) crystals
	- LAB or pseudocumene scintillator veto (1.4m diameter, 1.5 length)
- **Full detector** (LNGS & SUPL): ~50kg @ each site

SABRE Full Design one in LNGS (Italy) + one in SUPL at Stawell (Australia)

Conclusion

SABRE will confirm or refute the DAMA signal with high significance.

South detector will be housed in the first deep underground laboratory in the Southern Hemisphere.

Proof-of-Principle to start collecting data in Δ i iti Autumn 2018.

First SABRE publications

The SABRE project and the SABRE Proof-of-Principle

M. Antonello^a, E. Barberio^b, T. Baroncelli^b, J. Benziger^c, L. J. Bignell^d, I. Bolognino^{a,e}, F. Calaprice^f, S. Copello^{g,h}, I. Dafineiⁱ, D. D'Angelo^{a,e}, G. Di Carlo^g, M. Diemozⁱ, A. Di Ludovico^f, G. D'Imperioⁱ, W. Dix^b, A. R. Duffy^{j,k}, F. Froborg¹, G. K. Giovanetti^f, E. Hoppe^m, A. Ianni^g, L. Ioannucci^g, S. Krishnan^k, G. J. Lane^d, I. Mahmood^b, A. Mariani^h, M. Mastrodicasa^{i,n}, P. Montini ^{\star i,n}, J. Mould^{j,k}, F. Nuti^b, D. Orlandi^g, M. Paris^g, V. Pettinacciⁱ, L. Pietrofaccia^f, S. Rahatlou^{i,n}, N. Rossiⁱ, E. Shields^f, A. E. Stuchbery^d, B. Suerfu^f, C. Tomeiⁱ, V. Toso^{a,e}, P. Urquijo^b, C. Vignoli^g, A. Wallner^d, M. Wada^f, A. G. Williams^o, J. Xu^f

The SABRE Collaboration

^{*l*}Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom *^aINFN - Sezione di Milano, Milano I-20133, Italy ^bSchool of Physics, The University of Melbourne, Melbourne, VIC 3010, Australia ^cChemical Engineering Department, Princeton University, Princeton, NJ 08544, USA ^dDepartment of Nuclear Physics, The Australian National University, Canberra, ACT 2601, Australia ^eDipartimento di Fisica, Universit`a degli Studi di Milano, Milano I-20133, Italy f Physics Department, Princeton University, Princeton, NJ 08544, USA ^gINFN - Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67100, Italy ^hINFN - Gran Sasso Science Institute, L'Aquila I-67100, Italy i INFN - Sezione di Roma, Roma I-00185, Italy j ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Australia ^kCentre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia ^mPacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA ⁿDipartimento di Fisica, Sapienza Universit`a di Roma, Roma I-00185, Italy*

^oThe University of Adelaide, Adelaide, South Australia, 5005 Australia

Monte Carlo simulation of the SABRE PoP background

S. Copello^{g,h}, I. Dafineiⁱ, D. D'Angelo^{a,e}, G. Di Carlo^g, M. Diemozⁱ, A. Di Ludovico^f, G. D'Imperioⁱ, A. R. Duffy^{j,k}, F. Froborg¹, G. K. Giovanetti^f, E. Hoppe^m, A. Janni^g, L. Ioannucci^g, S. Krishnan^k, laboratory, and the font is modern, clean and friendly. M. Antonello^a, E. Barberio^b, T. Baroncelli^b, J. Benziger^c, L. J. Bignell^d, I. Bolognino^{a,e}, F. Calaprice^f, G. J. Lane^d, I. Mahmood^b, A. Mariani^h, P. McGeeⁿ, P. Montini ^{\star i,o}, J. Mould^{j,k}, F. Nuti^b, D. Orlandi^g, m. Faris^o, v. Fettinacci, L. Fietrolaccia, S. Kanatiou^r, iv. Kossi, E. Sineus, A. E. Stucinery, M. Paris^g, V. Pettinacciⁱ, L. Pietrofaccia^f, S. Rahatlou^{i,o}, N. Rossiⁱ, E. Shields^f, A. E. Stuchbery^d,

B. Suerfu^f, C. Tomeiⁱ, P. Urquijo^b, C. Vignoli^g, A. Wallner^d, M. Wada^f, A. G. Williamsⁿ, J. Xu^f, $M. ZUUOWSM$ M. Zurowski^b

 $The\ SABRE\ Collaboration$

STAWELL STAWELL STAWELL STAWELL SUBAT COEPP Symmetry in Subatomic Physics, $\sum_{n=1}^{\infty}$ Australian and the order of ADELAIDE 26 THE COEPP Symmetry in Subatomic Physics, $\mathbb{S}_{\mathbb{S}}$ is anomal purity operation operation operation operation operation inside a liquid substantial them inside a liquid substantial purity in Subatomic Physics, $\mathbb{S}_{\$ *^aINFN - Sezione di Milano, Milano I-20133, Italy b* Symmetry in Subatomic Physic

arXiv: 1806.09344

Both submitted to Astroparticle Physics

arXiv: 1806.09340

SUPL @ Stawell

- I am still a theorist 95% of the time, but we needed to get SABRE and SUPL happening in Australia;
- Ernie Henley was a warm, principled and deeply intelligent physicist and it was a privilege to know him;
- His influence on my research continues to this day;
- By pursuing symmetry as a way to better understand our universe.

