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• Ernest was a frequent visitor to Los Alamos,
   serving on T-Division and other advisory
   committees

• I joined the lab as a postdoc, in 1977:  that
   is where I met Ernest

• My first paper on hadronic parity violation
   was written with Ernest and Ben Gibson
   in 1980:  dealt with a topic still of interest

• In 1984 we collaborated on an early
   paper on atomic electric dipole moments: 
   also remains of interest, in part because of
   FRIB — main subject today

• It may have been a good paper:  the UW
   hired me soon after



Parity Violation: Analyzing Experiments in Light Nuclei 

• Several heroic experiments on hadronic PNC were done in the late 1970s,
   early 1980s — including ones at the UW

• Experimentalists turned to certain nuclei because (in contrast to the NN system)
   the experiments were doable and because nuclei offer advantages

They can filter interactions:   
• the quantum labels of nuclear states allow one to isolate parts of interactions of 

particular interest 

They can enhance the PNC signal:
• Through nuclear energy degeneracies: mixing of nearby states

• By competing symmetry-allowed but suppressed transitions (e.g., E1s in
        a self-conjugate nucleus) against a symmetry-forbidden strong one (M1)



hadronic weak interactions:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities, isospin is the filter
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motivation for our study:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities

↕ ↕
ΔI=1 ΔI=1/2

↕↕
symmetric ⇒ ΔI=0,2 ΔI=1 but Cabibbo suppressed

leads to the expectation that the weak hadronic neutral current will dominate nuclear 
experiments sensitive to isovector PNC — this is the only SM current not yet isolated
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meson-exchange view of HPNC

PNC PC

Pion exchange is isovector, assumed for many years to dominate the
channel due to the propagator enhancement

Would like to know its effective weak coupling to the composite nucleon, for 
comparison with the underlying SM quark couplings   
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Goal for some time:  an analysis based NN, few-body observables

Recent effort at LANSCE on                                  will need to be
made more precise at the SNS

One nuclear result is important, Pγ(18F): provides our best constraint on 
ΔI=1 PNC,  usual structure uncertainties can 
be eliminated using axial-charge β decay data

Best data: 
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Still fuzzy after 50 years...

Fact
Strong (and EM, too) interaction is omnipresent!
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Theoretically:

The non-perturbative QCD at low energies
The difficult nuclear many-body problems

Cheng-Pang Liu Parity Violation in Few-Nucleon Systems
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Essentially equivalent DDH (meson exchange), Danilov (5 s-p amplitudes analysis), 
                        and pionless EFT treatments
  
            Pionless EFT treatments
            - S. L. Zhu et al., Nucl. Phys. A748 (2005) 435
            - L. Girlanda, Phys. Rev. C77 (2008) 067001
            - D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys. A822 (2009) 1

            Early Danilov amplitude or contact interaction expansions
            - B. Desplanques and J. Missimer, Nucl. Phys. A300 (1978) 286
            - G. S. Danilov, Phys. Lett. 18 (1965) 40 and B35 (1971) 579

The introduction of 1/Nc arguments to build a hierarchy among the 5 s-p LECs

            - D. Phillips, D. Samart, and C. Schat, PRL 114 (2015) 062301
            - M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016) 025502

(pionless) Lagrangian, which reduces to the nonrelativistic form
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(As was done by Phillips, Schindler, and Springer [63], in Eq. (44) the factor
of 1/⇤3

� used by Girlanda has been absorbed into the coe�cients, making
them dimensional.)

Table 2: The coe�cients of the S-P PNC potential of Eq. (36) in the
DDH potential, Girlanda, and Zhu descriptions. Note that multiplicative
factors of 2mNm

2
⇢ and 2mNm

2
⇢/⇤

3
� must be applied to the Girlanda and

Zhu entries, respectively, to obtain the dimensionless coe�cients ⇤, e.g.,
⇤

1S0�3P0
0 DDH = 2(G1 + G̃1)[2mNm

2
⇢] = 2(C1 + C̃1 + C3 + C̃3)[2mNm

2
⇢/⇤

3
�].

Coe↵ DDH Girlanda Zhu

⇤
1S0�3P0
0 DDH �g⇢h0

⇢(2+�V )� g!h
0
!(2+�S) 2(G1+G̃1) 2(C1+C̃1+C3+C̃3)

⇤
3S1�1P1
0 DDH g!h

0
!�S � 3g⇢h0

⇢�V 2(G1-G̃1) 2(C1-C̃1-3C3+3C̃3)

⇤
1S0�3P0
1 DDH �g⇢h1

⇢(2+�V )� g!h
1
!(2+�S) G2 (C2+C̃2+C4+C̃4)

⇤
3S1�3P1
1 DDH

1p
2
g⇡NNh

1
⇡

⇣
m⇢

m⇡

⌘2

+g⇢(h1
⇢-h

10
⇢ )� g!h

1
! 2G6 (2C̃6+C2-C4))

⇤
1S0�3P0
2 DDH �g⇢h2

⇢(2+�V ) �2
p
6G5 2

p
6(C5+C̃5)

Returning to the “canonical form” of the S � P contact potential in
terms of the partial-wave operators of Eq. (36), the relationships between
the DDH, Girlanda, and Zhu forms of that potential can be summarized in
terms of coe�cients of that potential, as shown in Table 2. In using this
table it should be remembered that the DDH results include the assumption
that a one-boson exchange potential operates between strongly interacting
initial and final nuclear states. There are contributions from crossed-pion
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
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DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-Nc expectations, one finds
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
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2 . The best-value solution is ⇤+

0 = 717 and ⇤
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2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
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2 given in Eq. (19). This indicates that there may be a second
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the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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This has had an impact on the experimental program and its interpretation

10 years of effort has gone into                                  at the SNS 

Previously had been considered a second avenue to

Now 18F and NPDGamma
are viewed as nearly
orthogonal constraints on
this 2D diagonal space 

And a test of  the large-Nc LEC hierarchy (if one has two good measurements)
Has renewed interest in modern improvements of the analysis of 18F
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Figure 4: As in Fig. 3, but adding the impact of a future LQCD calculation of the �I = 2

amplitude ⇤
1S0�3P0
2 to ± 10%, centered on the central value from Fig. 3.

4.1 Testing the LO Theory

Despite the quality of the LO fit, there is not a lot of redundancy, especially with the constraints
from AL(~p↵) and A�(19F) being so similar. Thus an additional independent measurement sen-
sitive to the LO couplings would be valuable. Furthermore, while the value of AL(~pp) is known
to 10%, the errors on the other two experiments exceed 25%. A new measurement matching

the precision of AL(~pp), but probing a di↵erent combination of ⇤+
0 and ⇤

1S0�3P0
2 , thus could

substantially shrink the allowed ellipse shown in Fig. 3. A more precise determination of the
LO LECs would be important for future searches for N2LO LECs: in experiments where these
terms arise in combination with LO terms, even modest errors in LO parameters would obscure
the e↵ects of N2LO corrections. There do appear to be opportunities to generate new, high
quality constraints on the LO parameters.

Lattice QCD: In lattice QCD (LQCD) one solves strongly interacting problems by replacing
the continuum problem with a discretized version, a finite grid in Euclidean space-time with
periodic boundary conditions. While this precludes any direct calculation of scattering ampli-
tudes [83], the distortion of the energy levels in a finite volume can be related to low-energy
scattering parameters [84, 85, 86] using techniques developed by Lüscher [87, 88]. Most NN
scattering calculations documented in the literature were performed with nuclear sources that
placed both nucleons at the same space-time point, limiting the results to s-waves. In contrast,
applications to hadronic PNC, where p-waves are clearly essential, require the use of extended
nuclear sources, placed on the lattice in a variety of configurations that, in sum, allow one
to associate lattice eigenvalues with partial waves having good spherical symmetry. This is a
nontrivial problem given the cubic symmetry of the lattice. The first calculation of parity-odd
two-nucleon scattering using Lüscher’s method were recently performed, demonstrating the
technique [89].

There is an e↵ort underway to apply LQCD to the problem of calculating ⇤
1S0�3P0
2 [4].

Because this scattering amplitude carries �I = 2, there are no disconnected (quark loop)
contributions [90]. Thus the statistical noise in this channel should be significantly lower than
in �I = 0, 1 channels, opening up the possibility of a good LQCD “measurement” near the
physical pion mass. A calculation of hadronic PNC in the �I = 2 channel is expected to be
an order of magnitude less costly than a measurement in the �I = 1 channel. Preliminary

17

Impact of a 10% LQCD calculation 
of the I=2 amplitude  

⇤
1S0�3P0
2

I=1

I=1    NLO

also interest in improving our understanding
of the LO/NLO isoscalar/isotensor space

10% pp
asymmetry

25% 
~p+4 He

future 10% LQCD
�I = 2 LQCD result
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Lattice operators 
!  Non-local baryon operators are needed for good overlap with desired states  

 (for example parity odd P wave)  

!  Sophisticated software developed to calculate two baryon correlators 

NN measurements 
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Higher partial waves 
%  For NN PV scattering: initial S-wave & final P-wave 

%  Both S and P wave phase shifts are needed 

%  Calculate S, P, D, F wave phase shifts in NN scattering first 

%  The lattice finite volume PV matrix element is related to the infinite volume using 
Lellouch-Luscher formalism 

I = 1, A1+
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Luscher formula: ΔE + i 

solid = 2 (mN
2 + pn

2)1/2 - 2mN, pn=2πn/L, non-interacting 

points = ENN(qn) – 2 mN,,  ENN(qn)= 2 (mN
2 + qn

2)1/2, interacting 

LQCD work on HPNC builds on recent efforts to build the technology to use 
                         extended nuclear sources required for calculating  NN partial
                         waves beyond s-wave 

Cubic to rotational symmetry

1S0

Higher partial waves with extended sources:
  E. Berkowitz et al. (CalLat Collab.) arXiv:1508.00886
  K. Murano et al. (HAL QCD Collab.) arXiv:1305.2293



Electric Dipole Moments and CP Violation

Permanent electric dipole moments of an elementary particle or a composite s     
requires requires both P and T violation

Two important motivations for edm searches

     CP phases show up generically in the Standard Model and its extensions

     The need for additional sources of CP violation to account for baryogengesis

•  Permanent electric dipole moments of an elementary particle or
   composite system requires time-reversal  and parity violation:

   By the CPT theorem, a nonzero T-violating edm implies CP violation

•  Two important motivations for edm searches
     ◊ CP-odd phases show up generically in the standard model and
         its extensions:  the SM contains two, the QCD θ parameter and
         the CKM phase in the quark mixing matrix
     ◊ the need for sufficient CP violation to account for baryogenesis --
         which appears to require beyond-the-SM sources

Electric Dipole Moments and CP Violation*

�s

�E
�E(t⇥ �t)⇥ �E

⇤ Hedm ⇥ �Hedm

Hedm = d �E · �s
�s(t⇥ �t)⇥ ��s

*See talks by Tim Chupp, Christian Plonka-Spehr,  Wolfgang Korsch, Stephan Paul, 
  V. V. Federov, and Yury Sobolev 



Experimental sensitivity:   The dipole moment of a classical distribution

Limit*  d(199Hg) < 7.5 × 10-30 e cm (95% c.l.)  corresponds to a strain over atom of 
10-19 — comparable to what LIGO achieves over a 4 km interferometer arm

E.g., expand the atom to the size of the earth:  equivalent to a shell of excess charge
(difference between + and - charge at the poles) of thickness ∼ 10-4 angstroms

The limit on the precession in the applied field (10-5 V/m) corresponds to a sensitivity
to a difference in the energies of atom levels of ∼ 10-26 eV

* B Graner et al. (Seattle group), PRL 116 (2016) 161601

~

d =

Z
d

3
x ~x ⇢(~x)

•  Experimental sensitivity:  the dipole moment of a classical charge 
   distribution is 

   The stringent limit on d(199Hg) < 2.1 × 10-28 e cm thus corresponds
   to a measured strain of 10-18, comparable to what LIGO achieves 

   E.g., expanding the atom to the size of the earth, equivalent to a shell 
   of excess charge (difference between + and - charge) at the poles of 
   thickness ∼ 0.001 angstroms

   
   The limit on the precession in the applied field (∼105 v/m) corresponds

   to a bound on shifts in atomic levels of ∼10-25 eV

⇥d =
�

d3x ⇥x�(⇥x)

�s

+

-



General classification of electromagnetic moments:   

edm is the C1 moment; other P- and T-odd moments include M2, C3, …, and are
present for J ≥ 1

General current for a spin-1/2 fermion:

•  General classification of electromagnetic moments:

    The edm is the C1 moment:  additional P-odd,T-odd moments include
    the C3, C5.... and M2, M4...,  if the object has the necessary spin ≥1

•  General current for a spin-1/2 fermion:  

  Multipole   P-even, T-even   P-odd, T-odd     P-odd,T-even    P-even,T-odd

     CJ
M                 even J≥0          odd J≥1               x                      x

     MJ
M                  odd J≥1         even J≥2               x                      x

     EJ
M                        x                   x                 odd J≥1          even J≥2

    

N̄(p�)
�

F1�µ + F2⇥µ�q� +
a(q2)
M2

(⇥qqµ � q2�µ)�5 + d(q2)⇥µ�q��5

⇥
N(p)

�p�|jem
µ |p⇥ =

      Charge     Magnetic                  Anapole                   Electric Dipole

•  General classification of electromagnetic moments:

    The edm is the C1 moment:  additional P-odd,T-odd moments include
    the C3, C5.... and M2, M4...,  if the object has the necessary spin ≥1

•  General current for a spin-1/2 fermion:  

  Multipole   P-even, T-even   P-odd, T-odd     P-odd,T-even    P-even,T-odd

     CJ
M                 even J≥0          odd J≥1               x                      x

     MJ
M                  odd J≥1         even J≥2               x                      x

     EJ
M                        x                   x                 odd J≥1          even J≥2

    

N̄(p�)
�

F1�µ + F2⇥µ�q� +
a(q2)
M2

(⇥qqµ � q2�µ)�5 + d(q2)⇥µ�q��5

⇥
N(p)

�p�|jem
µ |p⇥ =

      Charge     Magnetic                  Anapole                   Electric Dipole

hp|Jem
µ |pi =

h i

h i

h i



Experiments:   

e/p/n edm experiments break into three general categories
      —neutron or electron beam/trap/fountain edm experiments
      —paramagnetic (unpaired electrons) atoms or molecules with sensitivity to the
                electron edm
      —diamagnetic atoms (electrons paired, nonzero nuclear spin) with sensitivity to
                p and n edm and to CPNC nuclear interactions

Key limits, from neutral systems, in units of e cm

Experiments

• e/p/n edm experiments break into three general categories
◊ neutron edm experiments
◊ paramagnetic (unpaired electrons) atoms or molecules with

sensitivity to the electron edm
◊ diamagnetic atoms (electrons paired, nonzero nuclear spin) with

sensitivity to the p and n edm and to CPNC nuclear interactions

• Key limits, done in neutral systems, in units e cm

     Particle edm limit system         SM prediction*

          p 7.9 × 10-25       Hg vapor cell            10-31

          n 2.9 × 10-26        ultracold n 10-31

       199Hg 3.1 × 10-29       Hg vapor cell          10-33

          e �.7 × 10-29        atomic Tl3 10-38

*CKM phase

7.5 x 10-30

2.0

n:     Baker et al, PRL 97 (2006) 131801;  Pendlebury et al., PRD 92 (2015) 9092003
e:     J. Baron et al., Science 343 (2014) 269
Hg:   B. Graner et al., PRL 116 (2016) 161601
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Experiments

• e/p/n edm experiments break into three general categories
◊ neutron edm experiments
◊ paramagnetic (unpaired electrons) atoms or molecules with

sensitivity to the electron edm
◊ diamagnetic atoms (electrons paired, nonzero nuclear spin) with

sensitivity to the p and n edm and to CPNC nuclear interactions

• Key limits, done in neutral systems, in units e cm

     Particle edm limit system         SM prediction*

          p 7.9 × 10-25       Hg vapor cell            10-31

          n 2.9 × 10-26        ultracold n 10-31

       199Hg 3.1 × 10-29       Hg vapor cell          10-33

          e �.7 × 10-29        atomic Tl3 10-38

*CKM phase

7.5 x 10-30

2.0

n:     Baker et al, PRL 97 (2006) 131801;  Pendlebury et al., PRD 92 (2015) 9092003
e:     J. Baron et al., Science 343 (2014) 269
Hg:   B. Graner et al., PRL 116 (2016) 161601

Potential
window for
discovery



199Hg vapor cells:   

7

199Hg vapor cells

– Number of  199Hg atoms: 1014

– Leakage currents at 10 kV: 0.5 – 1 pA

– N2 + CO buffer gas (500 Torr)

– Paraffin wall coating

– Spin relaxation time:  100 – 200 sec
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Frequency (GHz)

Absorption scan at 254 nm 

61S0! 63P1

F=1/2

F=3/2

Isotope

Nuclear spin

Nat. abundance

Enriched 199Hg

•  vapor cell restricts one to systems with electronic spin 0

•  Schiff shielding of nucleus, where edm resides ⇒ finite nuclear size

•  current limits on Hg (<2.1 ×10-28 ecm) and n (<2.9 ×10-26 ecm) compable

•  newest experiment now in blind analysis:  expected result (  ± 2) 10-29 ecm
⇒ significant improvement

(Heckel's workshop presentation)

Simple example: generation of a nuclear edm

•  Example of the QCD θ parameter -- one of two sources of SM CPNC

•  Induces a scalar CPNC πNN coupling, the leading ln (M/mπ) 
   contribution determined by current algebra

 

• 

�
g2

32⇥2
Fµ�F̃µ� ⇒   θ the parameter to be constrained 

L�NN � LCPNC
�NN = ⌅⇥ · N̄⌅⇤ (i�5g�NN + ḡ�NN ) N |ḡ�NN | � 0.027|�̄|
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nuclear edm   =   1-body   +   polarization   +   exchange current

Nuclear edm:

This division and the evaluation of the various terms was in the paper with Ernest
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nuclear edm   =   1-body   +   polarization   +   exchange current

That paper was the first to study nuclear enhancements in any systematic way



Dimensional estimate of generic nuclear edm:

                                                                
                                                                       

                                                                     

                               

•  So we find the overall scale of the polarization term

•  so one expects
     ◊  the polarizability to generally dominate the edm of a heavy nucleus
     ◊  potentially large enhancements in cases where a ground-state
          parity doublet exists, coupled by a dipole transition of reasonable
          strength     
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Possible enhancements in cases of a parity doublet:
in some special cases enhancements of ∼1000 
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nuclear edms dominated by the 
polarization term

charge separation governed by nuclear
size: polarized valence orbits

Nucleon edm: charge separation determined by pion mass
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Dimensional estimate of the generic nuclear edm:

                                                                
                                                                      a small         can greatly enhance  

                                                                      the potential can generally be related to   

                                e.g.,

Schiff screening:  Interaction energy of a non relativistic point nucleus with a nonzero 
edm, inside a neutral atom, is zero (bad news)

reduction in edm sensitivity                                     in heavy atoms
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Also must account for Schiff screening of edms in diagmagnetic atoms

•  Measurable in a diamagnetic atom is the energy shift of a neutral atom
   in an applied field:  edm resides on the nucleus

•  As Schiff and many others have discussed, classical result for a point-like
   nucleus is that the change in interaction energy linear in E and dnuclear

   Atom neutral: no net displacement in applied field
   Nucleus charged but not accelerated -- sum of applied and induced
       fields must cancel at the nucleus:  no edm energy shift!  

Eext

atom polarized:  nucleus displaced 
relative to at center

field induced at nucleus
compensating applied field
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But the embedding in a neutral atom less to very significant shielding

                                                                
                                                      

                               

Schiff screening:  Interaction energy of a non relativistic point nucleus with a nonzero 
edm, inside a neutral atom, is zero 

Residual effect depends on the incomplete shielding due to the nuclear finite size 
and associated electron penetration 

reduction in edm sensitivity                                     in heavy atoms

(The M2 moment is unshielded)

Also must account for Schiff screening of edms in diagmagnetic atoms

•  Measurable in a diamagnetic atom is the energy shift of a neutral atom
   in an applied field:  edm resides on the nucleus

•  As Schiff and many others have discussed, classical result for a point-like
   nucleus is that the change in interaction energy linear in E and dnuclear

   Atom neutral: no net displacement in applied field
   Nucleus charged but not accelerated -- sum of applied and induced
       fields must cancel at the nucleus:  no edm energy shift!  

Eext

atom polarized:  nucleus displaced 
relative to at center

field induced at nucleus
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The paper also made the first search for degeneracy enhancements:

                                                                
                                                                      a small         can greatly enhance  
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•  So we find the overall scale of the polarization term

•  so one expects
     ◊  the polarizability to generally dominate the edm of a heavy nucleus
     ◊  potentially large enhancements in cases where a ground-state
          parity doublet exists, coupled by a dipole transition of reasonable
          strength     
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body potential Q; U, , (V) depends linearly on (N
-Z)/A. These criteria comprise a figure of
merit that we employed in selecting nuclei that
might have enhanced nuclear dipole moments.
The best candidates, as shown in Table I, are
found in the rare-earth and actinide regions.
The ¹ilsson wave functions for the relevant levels
in these deformed nuclei are given in terms of
their asymptotic quantum numbers [Nn~A, K"].
In all cases the transitions between doublet levels
involve ~=0, so that mixing by a scalar poten-
tial is allowed. The I;1 matrix elements were
determined from the experimental lifetimes of
the excited-state members of the doublet and
from calculated internal-conversion coefficients. '
These estimates should be quite reliable in all
cases except ' 'Pa, where the very small energy
release of ~= 220 eV introduces considerable
uncertainty in the internal-conversion calcula-
tion. " However, the surprisingly large E1 ma-
trix element found in ' 'Pa is consistent with the
value determined for the analogous &'-& doublet
in "'Ac." The ratios of the experimental E1 ma-
trix elements to those predicted by the Nilsson
model generally exceed unity and in two cases do
so significantly ('"Sm and '"Pa, where the ratios
are )19.2 and 18.8, respectively). Such enhance-
ments contradict the general trend in nuclei that
the collective giant-dipole resonance results in
a substantial depletion of low-lying E1 strength.

We evaluated the Nilsson-model matrix ele-
ments of the two-body potential and of the Gamow-
Teller operator that appear in Eq. (6). As the
matrix elements of vr and 0 r, the operator
generated by reducing V to an effective one-body
form U, are generally strong [O(1) and O(b), re-
spectively, where b is the oscillator parameter],
we expect these estimates to be reliable. The
resulting predictions for D„/d„are shown in Ta-
ble I.
The atomic shielding problem discussed earlier

for the electric dipole moment does not arise for
the inhomogeneous external electric and magnet-
ic fields required to interact with higher odd nu-
clear electromagnetic moments. However, the
magnitude of such interactions are expected to
be suppressed by [(nuclear size)/(atomic size)]~ ',
where L is the multipolarity. We consider en-
hancements due to wave-function admixing for
the first such moment, M2. The quantity analo-
gous to D~/d„ in Eq. (6) is

M2 2i im(c (0) i T, 's I i1)
m2 (0 iiT, -'g'ii 0)1 +

where T, '0', proportional to g„», is the M2
projection of J~™odd

T magg
2

and T, '& is the ordinary M2 operator
A

T, ' =- Q j[1+~~(i)]r(i)'[I'2(n, ) SV(i)], - 2[ p.'+ p"T,(i)] (15)' 'r(i)[ I'|(0,) eo],}. (7)
$ =1

The scalar and vector magnetic moments are p, '=0.88 and P" =4.706, )~ and @denote reduced matrix
elements and tensor products, and e =—(1~ V ~

~ 0)/~. Terms arising in the nonrelativistic reduction
of Eq. (8) that vanish on shell" as well as exchange currents (which do affect magnetic multipoles)
have been ignored in Eq. (7). The enhancements shown in Table I, of order 10'-10~, are considerable

TABLE I. Nuclear electric dipole and magnetic quadrupole moments.

aE'(kev& &1(v io&/g (kev&' &o iiGT iso&" &o iiz1i(1&' D~/d„M2/m2

&10.1
—541
664

&-610
—926
12400

—170
-237
213
180
187
39

&3.74
0.39
0.64

&—0.74
—0.21
—4.58

—0.65
1Q 2 1
1.03

—0.56
—0.56
1.05

Nucleus fÃnz&, K"],' +ezra, E ], ,
Sm [651, ~+j f521, —,'-) 35.8 &86.1
Dy [642, 2 j [523, 2 j 25.7 10.3
'"Er [523, —,'-] [642, —,"] 47.2 9.6
'"Ac [532, —,'-] [651,—+] 40.0 &19.3
~ ~Ac [532, —,' j [651,—+j 27.4 8.7
Pa [642, 2 [523, 2 j 0.22 2390

Nilsson model parameters taken from A. Bohr and B.Mottelson, »~E«& &t~«&«(Benjamin, London, 1975),
Vol. II, p. 220. Wave functions for first three nuclei computed for g =0.3, last three P =0.2. All states have J=E.
"Theoretical value.
Magnitudes calculated from lifetimes given in Nuclear Data Sheets and internal conversion coefficients of Ref.

10; sign from theory.
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FRIB and the strange case of 229Pa 

There was a spectacular case of enhancement identified in that study, the 160 eV
parity doublet in 229Pa  (                      ) — a factor > 103 - 104 for C1/M2

Half life of 1.5d, decays by electron capture

Strong E1 between doublet states, governs IC lifetime

At that time, no source of 229Pa that could satisfy the needs of a practical experiment

FRIB includes an isotopes harvesting program, focused on medical isotopes

In a parasitic mode, the production of 229Pa is anticipated to be high, 1010 atoms/sec

Harvesting over several hours would thus yield in excess of 1014 atoms/day

5/2+ $ 5/2�



Nuclear Enhancements: 

From collective motion:  In rotational
nuclei, intrinsic state breaks spherical
symmetry, deformed into a football,
restored by the “Goldstone mode” of
rotations

Octupole deformation: deformed 
intrinsic state and its parity reflection
can be combined

Deformation violates P and T, 
symmetry restored by collective motion,
yielding parity doublets that strongly
mix through P-odd operators

  ⇒ CPNC polarization enhancement

|eveni = |+i+ |�i
|odd i = |+i � |�i

•  One kind of  T-odd enhancement comes from collective nuclear motion 

2

unable (obviously) to examine the effects of short-range
NN correlations.

We briefly review some definitions and ideas. The
Schiff moment is given by

S ≡ ⟨Ψ0|Ŝz|Ψ0⟩ =
∑

i̸=0

⟨Ψ0|Ŝz|Ψi⟩⟨Ψi|V̂PT |Ψ0⟩

E0 − Ei
+ c.c.,

(1)
where |Ψ0⟩ is the member of the ground-state multiplet
with Jz = J = 1/2 (positive parity), the sum is over

excited states, and Ŝz is the operator

Ŝz =
e
10

∑

p

(

r
2
p −

5
3r

2
ch

)

zp, (2)

with the sum here over protons, and r
2
ch the mean-square

charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated
by the pion [7, 15]:

V̂PT (r1 − r2) = −
g m

2
π

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 τ⃗1 · τ⃗2 −
ḡ1

2
(τ1z + τ2z) + ḡ2(3τ1zτ2z − τ⃗1 · τ⃗2)

]

(3)

−
ḡ1

2
(σ1 + σ2) · (r1 − r2) (τ1z − τ2z)

}

exp(−mπ|r1 − r2|)

mπ|r1 − r2|2

[

1 +
1

mπ|r1 − r2|

]

,

where arrows denote isovector operators, τz is +1 for neu-
trons, mN is the nucleon mass, and (in this equation
only) we use the convention h̄ = c = 1. The ḡ’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
πNN coupling constant.

The asymmetric shape of
225

Ra implies parity dou-
bling (see e.g. Ref. [16]), i.e. the existence of a very low-
energy |1/2

−
⟩ state, in this case 55 keV [17] above the

ground state |Ψ0⟩ ≡ |1/2
+
⟩, that dominates the sum in

Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is
rigid, the ground state and its negative-parity partner in
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”
(see Fig. 1), which represents the wave function of the nu-
cleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation
(1) then reduces to [3]

S ≈ −
2

3
⟨Ŝz⟩

⟨V̂PT ⟩

(55 keV)
, (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT , we can express the
dependence of the Schiff moment on the undetermined
T-violating πNN vertices as

S = a0 g ḡ0 + a1 g ḡ1 + a2 g ḡ2 . (5)

The coefficients ai, which are the result of the calculation,
have units e fm

3
.

The octupole deformation enhances ⟨Ŝz⟩, the first fac-
tor in Eq. (4), making it collective, robust, and straight-
forward to calculate with an error of a factor of two or
less. The interaction expectation value ⟨V̂PT ⟩ is harder
to estimate because it is sensitive to the nuclear spin

FIG. 1: (color online). Shape of the microscopically calcu-
lated [13] mass distribution in

225
Ra, represented here by the

surface of a uniform body that has the same multipole mo-
ments Qλ0 for λ=0. . . 4 as our calculated density.

distribution, which depends on delicate correlations near
the Fermi surface. Our calculation allows the breaking
of Kramers degeneracy in the intrinsic frame and, conse-
quently, spin polarization.

To evaluate ⟨V̂PT ⟩ we constructed a new version of the
code HFODD (v2.14e) [18, 19]. The code uses a triax-
ial harmonic-oscillator basis and Gaussian integration to
solve self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean-field does not capture) by multiplying the in-

From Dobaczewski and Engel

Familiar quadrupole case: deformed 
intrinsic state breaks spherical
symmetry, which is restored by the
 “Goldstone” mode of rotations

Octupole deformation: deformed
intrinsic state and its parity 
reflection can be combined 

Deformation violates T and P : 
symmetry restored by collective 
motion, yielding parity doublets

Motivation for 225Ra measurement:  mixing of nearly degenerate states
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unable (obviously) to examine the effects of short-range
NN correlations.

We briefly review some definitions and ideas. The
Schiff moment is given by

S ≡ ⟨Ψ0|Ŝz|Ψ0⟩ =
∑

i̸=0

⟨Ψ0|Ŝz|Ψi⟩⟨Ψi|V̂PT |Ψ0⟩

E0 − Ei
+ c.c.,

(1)
where |Ψ0⟩ is the member of the ground-state multiplet
with Jz = J = 1/2 (positive parity), the sum is over

excited states, and Ŝz is the operator

Ŝz = e
10

∑

p

(

r2
p − 5

3
r2
ch

)

zp, (2)

with the sum here over protons, and r2
ch the mean-square

charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated
by the pion [7, 15]:

V̂PT (r1 − r2) = −
g m2

π

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 τ⃗1 · τ⃗2 −
ḡ1

2
(τ1z + τ2z) + ḡ2(3τ1zτ2z − τ⃗1 · τ⃗2)

]

(3)

−
ḡ1

2
(σ1 + σ2) · (r1 − r2) (τ1z − τ2z)

}exp(−mπ|r1 − r2|)

mπ|r1 − r2|2

[

1 +
1

mπ|r1 − r2|

]

,

where arrows denote isovector operators, τz is +1 for neu-
trons, mN is the nucleon mass, and (in this equation
only) we use the convention h̄ = c = 1. The ḡ’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
πNN coupling constant.

The asymmetric shape of 225Ra implies parity dou-
bling (see e.g. Ref. [16]), i.e. the existence of a very low-
energy |1/2−⟩ state, in this case 55 keV [17] above the
ground state |Ψ0⟩ ≡ |1/2+⟩, that dominates the sum in
Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is
rigid, the ground state and its negative-parity partner in
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”
(see Fig. 1), which represents the wave function of the nu-
cleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation
(1) then reduces to [3]

S ≈ −
2

3
⟨Ŝz⟩

⟨V̂PT ⟩

(55 keV)
, (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT , we can express the
dependence of the Schiff moment on the undetermined
T-violating πNN vertices as

S = a0 g ḡ0 + a1 g ḡ1 + a2 g ḡ2 . (5)

The coefficients ai, which are the result of the calculation,
have units e fm3.

The octupole deformation enhances ⟨Ŝz⟩, the first fac-
tor in Eq. (4), making it collective, robust, and straight-
forward to calculate with an error of a factor of two or
less. The interaction expectation value ⟨V̂PT ⟩ is harder
to estimate because it is sensitive to the nuclear spin

FIG. 1: (color online). Shape of the microscopically calcu-
lated [13] mass distribution in 225Ra, represented here by the
surface of a uniform body that has the same multipole mo-
ments Qλ0 for λ=0. . . 4 as our calculated density.

distribution, which depends on delicate correlations near
the Fermi surface. Our calculation allows the breaking
of Kramers degeneracy in the intrinsic frame and, conse-
quently, spin polarization.

To evaluate ⟨V̂PT ⟩ we constructed a new version of the
code HFODD (v2.14e) [18, 19]. The code uses a triax-
ial harmonic-oscillator basis and Gaussian integration to
solve self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean-field does not capture) by multiplying the in-
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225Ra: first edm study with a radioactive nucleus 

Argonne experiment used a radioactive isotope (14.9 d) produced off-site (ORNL)
Utilized a magneto optical trap:  1014 atoms used over the experiment’s lifetime

Achieved a bound of 

Projected statistical sensitivity of the experiment is 

225Ra provides a factor 100 advantage over 199Hg:  55 keV degeneracy

229Pa provides a factor of 250 advantage over 225Ra:  160 eV degeneracy

An experiment could be attempted on-site at FRIB, using the daily harvest                    

< 1.4⇥ 10�23 e cm

⇠ 10�28 e cm

M. Bishof et al., arXiv:1606.0493

theory: Dzuba et al, PRA 66 (2002) 012111
Auerbach et al., PRL 76 (1996) 4316

Dobaczewski, Engel PRL 94 (2005) 232502



The strange case of 229Pa:  The IC rate is a puzzle 

The doublet parity mixing means there is a contribution to the edm proportional to

and the C1 matrix element can be taken from the lifetime of the 5/2- state

This state decays by internal conversion 100% due to its low energy: 
standard tables of IC coefficients (atomic HF)  needed matrix element

It is large (additional enhancement): 14 times the naive Nilsson model estimate

But the Schiff theorem has a generalization for dynamic transitions (Leon and Seki) 

if the wavelength of the photon is long on the atomic scale:  yes in this crazy case                  
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Does this photo absorption argument also work for IC?    

Applied an atomic RPA code: the RPA corrections change the HF result by a 
factor of 50, suppressing the decay

But the lifetime is measured, so to keep this fixed, the C1 amplitude must be
further enhanced by

Becomes 80 times the s.p. Nilsson model estimate 

It seems extreme …  large enhancement both because of the degeneracy, and 
because of the crazy C1 strength

It would be great if true  (one is “getting back” part of the Schiff shielding)

Enhanced C3 and C1 strengths accompany octupole deformation:  perhaps the
extreme degeneracy and the extreme C1 strengths are reflections of the same 
physics…       but there are other possibilities too

It would be very nice if FRIB enabled this rather special/exotic edm experiment —
        one that Ernest helped identify
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