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Abstract

A simple quantum mechanical model of neutrino oscillations fits all experimental
data thus far, but the data is sparse enough to allow for many other possibilities.
The mass-varying neutrino (MaVaN) model adds one heavy sterile neutrino with
a mass proportional to a power of the electron number density. We study oscil-
lations between two active neutrinos after integrating out the sterile neutrino,
with the goal of reproducing the standard electron neutrino survival curve for
electron neutrinos from the sun. Using a computer scan to find the best-fitting
parameters, we achieve this goal, and demonstrate that there are possibilities
for new physics in the explanation of neutrino oscillations.



1 Introduction

The discovery of neutrino oscillations by Super-Kamiokande [1] at once estab-
lished that neutrinos have nonzero masses and excited a search for the theory
predicting those masses. The SNO [2], [3] and KamLAND [4] collaborations
have further confirmed the nonzero neutrino mass in solar neutrinos. As a re-
sult, the solar neutrino oscillation parameters are tightly pinned down, as shown
in [5]: 6 × 10−5 eV2 < ∆m2

21 < 1 × 10−4 eV2 and 0.3 < tan2(θ12) < 0.55 at
2σ. A simple quantum mechanical model with these experimental parameters
can reproduce the electron neutrino survival probability curve seen by experi-
ment(see section 2.1 below), but the existing oscillation data is sparse enough to
allow for many other possibilities as well. The mass-varying neutrino (MaVaN)
model takes as an ansatz one sterile neutrino with a mass that scales as a power
of the electron number density. We calculate the survival probability of solar
electron neutrinos numerically in the hopes of reproducing the standard curve
as a function of energy, as in [6].

The rest of the paper is organized as follows: section 2 outlines background
information, including a derivation of the standard quantum mechanical model
and reasons for a new approach to neutrino oscillations. Section 3 discusses
both the setup and the analysis of the MaVaN proposal, and in section 4 we
present our conclusions.

2 Background

2.1 The Standard Neutrino Oscillation Model

The simplest model of neutrino oscillations involves two active neutrinos. There
are of course three neutrinos according to the Standard Model of particle physics,
but the the dominant oscillations happen between the lightest two neutrinos, so
neglecting the third is a good first-order approximation. Oscillations emerge be-
cause the flavor eigenstates | νe〉 and | νµ〉 are different from the mass eigenstates
| ν1〉 and | ν2〉, with masses m1 and m2 respectively. We assume that these are
labeled such that m1 ≤ m2. In the absence of matter, these two different bases
are related by a vacuum mixing angle θ0, so that going from the first basis to
the second means multiplying the latter by a unitary transformation U(θ0):(

| νe〉
| νµ〉

)
=
(

cos(θ0) sin(θ0)
− sin(θ0) cos(θ0)

)(
| ν1〉
| ν2〉

)
(1)

In the mass basis, the mass matrix for the system is

Mmass =
(

m1 0
0 m2

)
(2)
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and so in the flavor basis it is Mflavor = U(θ0)MmassU
†(θ0) where U(θ0) is as

above. Using the relativistic approximation with

E =
√

p2 + m2 ≈ p +
m2

2p
(3)

we have a kinetic contribution to the Hamiltonian of

T ≈ p 11 +
1
4p

M2
flavor (4)

= p 11 +
1
4p

(
cos2(θ0)m2

1 + sin2(θ0)m2
2 sin(θ0) cos(θ0)

(
m2

2 −m2
1

)
sin(θ0) cos(θ0)

(
m2

2 −m2
1

)
sin2(θ0)m2

1 + cos2(θ0)m2
2

)
(5)

=
1
4p

(
m2

2 −m2
1

)( − cos(2θ0) sin(2θ0)
sin(2θ0) cos(2θ0)

)
+

1
4p

(
4p2 + m2

2 + m2
1

)
11 (6)

The term proportional to the identity will add the same amount to the energy
of each eigenstate. Since it will be the difference in energies that gives rise
to oscillations, the term proportional to the identity will have no oscillatory
effect, and we will neglect it from now on. Introducing the standard notation
∆m2 = m2

2−m2
1 and approximating 1

p ≈
1
E to first order, we have the following

kinetic term:

T =
∆m2

4E

(
− cos(2θ0) sin(2θ0)
sin(2θ0) cos(2θ0)

)
(7)

There is a potential term in the Hamiltonian that we have thus far neglected,
as Wolfenstein first noticed in 1978 [7]. When neutrinos pass through matter,
which is almost completely first generation leptons and quarks, weak current
interactions single out the electron neutrino component. This contributes a
potential term

VMSW =
√

2GF ne

(
1 0
0 0

)
=
√

2
2

GF ne

(
1 0
0 −1

)
+
√

2
2

GF ne 11 (8)

where ne is the electron density. If we write

Ω =
2
√

2GF neE

∆m2
(9)

and drop the term proportional to the identity, the Hamiltonian can then be
written

H =
∆m2

4

(
− (cos(2θ0)− Ω) sin(2θ0)

sin(2θ0) cos(2θ0)− Ω

)
(10)

From this we see that the mixing angle in matter θm is given by

sin2(2θm) =
sin2(2θ0)

sin2(2θ0) + (cos(2θ0)− Ω)2
(11)
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The energies (or more accurately, the energy splittings, since we have dropped
parts of the Hamiltonian proportional to the identity) are ±ξ, where

ξ =
∆m2

4E

√
Ω2 − 2Ω cos(2θ0) + 1 (12)

We now derive the survival probability for solar electron neutrinos. From above,
flavor and mass eigenstates in the sun are related by(

| νe〉
| νµ〉

)
= U(θm)

(
| ν1〉
| ν2〉

)
(13)

The mass eigenstates evolve in time as usual, i.e.

| νj(t)〉 = | νj(0)〉 exp
(
−i
∫ t

0

Ej(t′) dt′
)

(14)

Differentiating the relation between the sets of eigenstates, we get

∂

∂t

(
| νe〉
| νµ〉

)
=

∂U(θ)
∂t

(
| ν1〉
| ν2〉

)
+ U(θ)

∂

∂t

(
| ν1〉
| ν2〉

)
(15)

and the Schrödinger equation tells us that

i
∂

∂t

(
| ν1〉
| ν2〉

)
= U(θ)

(
−ξ 0
0 ξ

)
U†(θ)

(
| νe〉
| νµ〉

)
(16)

Combining these two gives

i
∂

∂t

(
| ν1〉
| ν2〉

)
=
(

−ξ −i ∂θ
∂t

i ∂θ
∂t ξ

)(
| ν1〉
| ν2〉

)
(17)

The adiabatic approximation is valid in the region where the off-diagonal terms
are much smaller than the difference in diagonal terms, i.e.

∂θ

∂t
� 2ξ or equivalently

1
ne

∂ne

∂t
� ∆m2

2E

sin2(2θ)
cos(2θ)

(18)

In this approximation the different mass eigenstates do not mix: 〈νi(t) |νj(t)〉 =
δij . The probability that an electron neutrino generated in the sun at t = 0 is
measured as an electron neutrino a time T later is

Pνe→νe
= |〈νe(T ) |νe(0)〉|2 (19)

=

∣∣∣∣∣∣
∑
j,k

〈νe(T ) |νj(T )〉 〈νj(T ) |νk(0)〉 〈νk(0) |νe(0)〉

∣∣∣∣∣∣
2

(20)

=

∣∣∣∣∣∣
∑
j,k

U∗
ej(θm)Uek(θ0)δjk exp

(
−i
∫ T

0

Ej(t′) dt′

)∣∣∣∣∣∣
2

(21)

= cos2(θm) cos2(θ0) + sin2(θm) sin2(θ0) +
1
2

sin(2θm) sin(2θ0) cos

(∫ T

0

(E2(t′)− E1(t′)) dt′

)
(22)
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The last term oscillates very rapidly for solar neutrinos, and so averages out to
zero. With a little trigonometry, we can write the remaining terms as

Pνe→νe =
1
2

+
1
2

cos(2θm) cos(2θ0) (23)

The current best values of the mass squared difference and the vacuum mixing
angle are ∆m2 = 8.3 × 10−5 eV2 and tan2(θ) = 0.36 (see [8]). Plugging these
in, along with Bahcall’s value for the solar electron density [9], we can plot
the survival probability for electron neutrinos as a function of energy. Electron

Figure 1: The standard adiabatic electron neutrino survival probability as a
function of energy

neutrinos with larger energies are less probable to remain electron neutrinos by
the time they reach the detector on Earth. If instead of assuming adiabaticity
we make the Landau-Zener approximation, the probability begins to rise again
for large energies (asymptoting to the same probability value as at zero energy)
[10], [11]. However, we will be assuming that all processes are adiabatic in
developing the MaVaN theory, so we will not need this addition.

2.2 Reasons for a New Approach

While the approach outlined above does fit all the experimental data, there is
so little data available that this is hardly telling. There is substantial room for
effects due to new physics, and at this early stage many of these effects cannot
be ruled out.
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3 Methods

3.1 Setup

We consider a universe with two active neutrinos and one heavy sterile neutrino.
We take as an ansatz that the mass of the sterile neutrino varies as a function
of the electron number density according to

msterile = Knr
e (24)

for some constants K and r. In this system, the initial mass matrix in the flavor
basis is

M3 =

 0 0 mD sin(θ)
0 0 mD cos(θ)

mD sin(θ) mD cos(θ) Knr
e

 (25)

where mD is an unspecified Dirac mass, and θ is the vacuum mixing angle. On
the assumption that the sterile neutrino is very heavy, we integrate it out, and
the square of our mass matrix becomes

M2
2 = C2n−2r

e

(
sin2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) cos2(θ)

)
(26)

where C = m2
D

K is the relevant combination of free parameters. Neglecting the
terms proportional to the identity, the Hamiltonian for this system is given by
H = 1

2E M2
2 + V where V is the MSW potential:

H =
1

2E
C2n−2r

e

(
2
√

2GF n2r+1
e E

C2 + sin2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) cos2(θ)

)
(27)

3.2 Analysis

We consider two points, one at the Sun and one on Earth. For these two points,
we plug in the known values of the parameters in the Hamiltonian, such as
electron density. With this we have the MaVaN Hamiltonian at the two points
under consideration. There are two parameters whose values we do not know –
the ratio C and the power dependence r (we have assumed that standard pa-
rameters like θ take on their currently accepted measured values). The MaVaN
theory does not place constraints on C or r; however, since the goal of the paper
was to demonstrate that an alternate theory could reproduce the experimental
neutrino oscillation results, finding an appropriate pair is enough. That said,
we know from working with neutrino oscillations that masses tend to be on
the order of 10−2 eV, and we use this to limit the parameter search. Plotting
the electron survival probability as a function of energy with various candidate
search results, the results appear very promising. The value of r mainly influ-
ences the steepness of the descent, and weakly influences the energy value where
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Figure 2: The standard and MaVaN adiabatic electron neutrino survival prob-
ability as functions of energy. The MaVaN curve, which is the upper curve, can
be fine tuned to lie directly on top of the standard curve.

it takes place. The value of C primarily affects this latter quantity, and so using
both we can tune the curve to closely replicate the standard curve. An example
with r = .58 is shown in figure 2. The curve predicted by the MaVaN theory is
the upper curve. Further fine tuning can put the MaVaN curve directly on top
of the standard curve. It can also make the transition steeper, shallower, begin
later, begin earlier, and a host of other possibilities. Most importantly, though,
the graph contains the essential features of the standard electron neutrino sur-
vival curve, which was what we were attempting to reproduce.

4 Conclusion

The simplest explanation of neutrino oscillations agrees with current experimen-
tal data, but measured data is so scarce that this is hardly a stringent test. The
mass-varying neutrino (MaVaN) model takes as an ansatz one sterile neutrino
with a mass that scales as a power of the electron density. We have demon-
strated that this theory can calculate the survival probability of solar electron
neutrinos in agreement with the standard curve. While the standard explana-
tion of neutrino oscillations may be satisfactory, this result means that alternate
explanations for neutrino oscillations cannot be ruled out.
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