

Integral Geometry: A new Frontier?

By Craig Webster Advisor: Prof. Jerry Seidler UW REU 2004

Outline

- Introduction to Hadwiger's Theorem
- Physics Review Letters paper that gave Jerry the idea for this project
- First project
 - Generalize Hadwiger's Theorem
 - Or Apply It
- Second project: Simulated Annealing
- Conclusion

Definitions

• Valuation: A function that maps from the set of convex bodies to a real number, such that

 $\mu(\emptyset) = 0,$ $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B),$

for all convex bodies, A and B.

Definitions [cont'd]

• Euler characteristic, *x*: Topological descriptor: qualitatively, number of distinct bodies.

 $\chi = vertices - edges + faces = 1 - genus$

Minkowski Functionals

Minkowski functionals, M_v: Morphological descriptors of a system.

$$M_{\upsilon}(A) = \int \chi(A \cap E_{\upsilon}) d\,\mu(E_{\upsilon}),$$

where A is any convex body, v goes from 0 to the dimension of A, ω_v is the volume of a unit ball, E_v denotes the v-dimensional plane, and $d\mu(E_v)$ is a normalization factor.

Hadwiger's Theorem

Suppose that μ is a continuous rigid motion invariant valuation on the set of convex bodies. Then there exists c_0, c_1, \ldots, c_n elements of the real numbers such that for all convex bodies L,

$$\mu(L) = \sum_{i=0}^{d} c_i M_i(L).$$

Reconstructing Complex Materials via Effective Grain Shapes¹:

- Experimentally in 3D, Minkowski functionals appear to be a basis for conductivity – not linearly, though.
- Conductivity is not additive . . .
- Mathematical band-aid?

¹C.H. Arns, et al., PRL, Vol. 91, Num. 21, 215506

TWO PATHS

Generalize Hadwiger's Theorem to Include non-Additive Systems

Simplify Complicated Additive Systems Using Hadwiger's Theorem

Where to go?

- Not possible to generalize easily
- No Hadwiger-applicable additive systems in sight

Simulated Annealing: A new

Frontier?

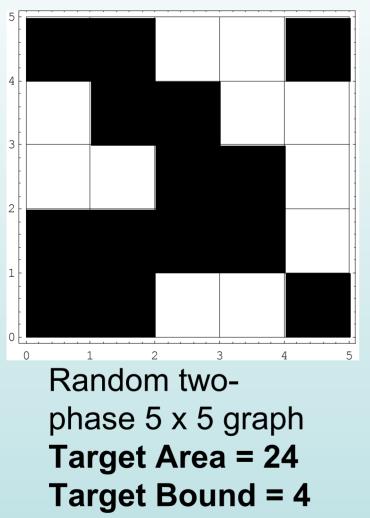
By Craig Webster

Simulated Annealing A heuristic method used in statistical mechanics that finds the energetic minimum of a system.

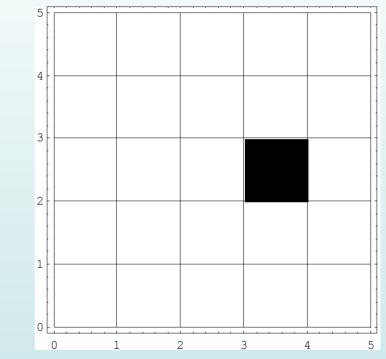
Objectives

- Create a simulated annealing program that goes to target values (input by user) for the Minkowski functionals
- Determines whether the two-dimensional test of conductivity currently being done by another undergraduate student is including all of state space.

Main Idea of Program



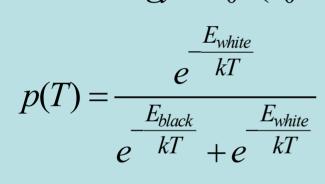
Target Euler = -1

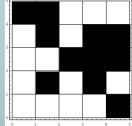


Annealed to target values of: Area = 24 Boundary = 4 Euler = -1

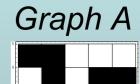
Equations

$$MockEnergy = c_0 \cdot (V_0 - V_{0,tar})^2 + c_1 \cdot (V_1 - V_{1,tar})^2 + c_2 \cdot (V_2 - V_{2,tar})^2$$





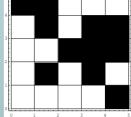
 Create a random, two-phase, two-dimensional graph, denoted Graph A.



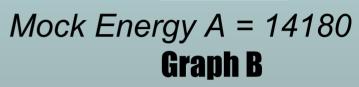
- Create a random, two-phase, two-dimensional graph, denoted Graph A.
- 2. Calculate the Minkowski functionals and mock energy.

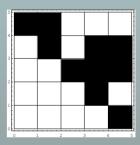
Mock Energy A = 14180

Graph A

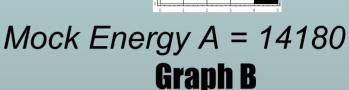


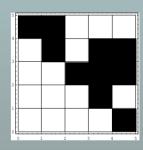
- Create a random, two-phase, two-dimensional graph, denoted Graph A.
- 2. Calculate the Minkowski functionals and mock energy.
- 3. Invert one pixel to create Graph B.





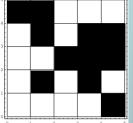
- Create a random, two-phase, two-dimensional graph, denoted Graph A.
- 2. Calculate the Minkowski functionals and mock energy.
- 3. Invert one pixel to create Graph B.
- 4. Calculate the Minkowski functionals and mock energy B.





Mock Energy B = 11320

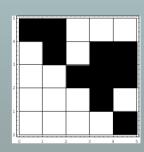




- 1. Create a random, two-phase, twodimensional graph, denoted Graph *Mock Energy* A = 14180 **Graph B**
- 2. Calculate the Minkowski functionals and mock energy.

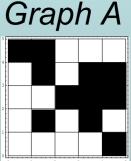
Α.

- 3. Invert one pixel to create Graph B.
- 4. Calculate the Minkowski functionals and mock energy B.
- 5. Find probability, p, and compare p to a random number.

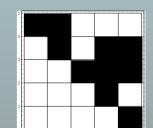


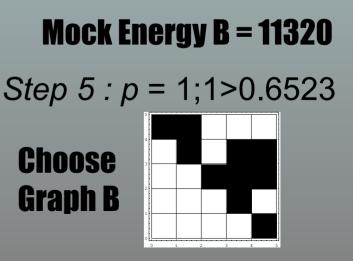
Mock Energy B = 11320

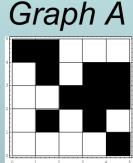
Step 5 : p = 1;1>0.6523



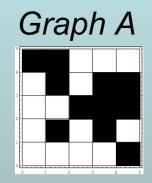
- 1. Create a random, two-phase, twodimensional graph, denoted Graph *Mock Energy A = 14180* A.
- 2. Calculate the Minkowski functionals and mock energy.
- 3. Invert one pixel to create Graph B.
- 4. Calculate the Minkowski functionals and mock energy B.
- 5. Find probability, *p*, and compare *p* to a random number.
- 6. Choose A or B.



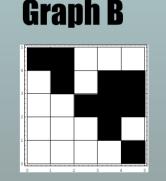




- 1. Create a random, two-phase, twodimensional graph, denoted Graph A.
- 2. Calculate the Minkowski functionals and mock energy.
- 3. Invert one pixel to create Graph B.
- 4. Calculate the Minkowski functionals and mock energy B
- 5. Find probability, *p*, and compare *p* to a random number.
- 6. Choose A or B.
- 7. Lather, Rinse, Repeat [Subtract "tempStep" from T, and return to (2)].
 Follow these steps until T reaches 0.



Mock Energy A = 14180



Mock Energy B = 11320

Step 5 : p = 1;1>0.6523
Choose

Graph B

My Status

- Created simulated annealing program
- Did a qualitative test of the parameters
- Still left to do:
 - Determine how changing T affects annealing
 - In mock energy, determine optimal c_i's
 - Test some target values

Conclusion

- No mathematical foundation to generalize Hadwiger's Theorem
- Hadwiger's Theorem is a tool, not a weapon
- For the next week and a half, run simulated annealing program to generate an in-depth understanding of the various scenarios corresponding to Minkowski functionals

Thanks to

- Dr. Jerry Seidler
- University of Washington
- The National Science Foundation
- Tim and Erin
- REU Participants