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I. Introduction  
 In the past twenty years, physicists have utilized the mathematical principles 

specified by integral geometry to analyze systems ranging from maps of the 

morphological structure of Cosmic Microwave Background to estimating percolation 

thresholds in porous materials [1, 2].  Myriad papers have acclaimed its utility in finding 

the higher-order morphological structure of objects with relatively little calculation [3, 4].  

The only stipulation is that Hadwiger’s theorem, the physically-useful component of 

integral geometry, requires the studied system be translation and rotation invariant and 

additive [5].   

 In 2003 the experimental paper “Reconstructing Complex Materials Via 

Effective Grain Shapes” suggested that the morphological information that governs 

Hadwiger-applicable systems also completely defines some non-additive systems, albeit 

in a non-linear fashion [6].  This is counterintuitive, since Hadwiger’s Theorem only 

applies to additive systems.  If the experimental implications of this finding can be 

described mathematically, the results have the potential to provide insight into a 

multitude of physical phenomena.   

 My project began by attempting to resolve the mathematical dilemma presented 

by the experimental results of 2003.  I planned to analyze the proof of Hadwiger’s 

theorem and determine whether it could be generalized to include non-additive systems.  

Along the way, I would look for systems in which to apply integral geometry; 

specifically those in which a complex system could be simplified by Hadwiger’s 

theorem.  If such a situation arose, the physical system could be described completely by 

its morphological structure, potentially an exciting result that would provide new insight 

into the system. 

 After understanding the proof to Hadwiger’s theorem and attempting to apply it 

without success, I embarked upon a new direction in my research and created simulated 
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annealing program that could test the state space of various values of Minkowski 

functionals.   

   This paper will choronologically follow the research that I did in the summer of 

2004.  Section II will describe my study of Hadwiger’s Theorem, including background 

information and my attempts to apply and generalize it.  Then in Section III, I will make 

some concluding remarks.        

 

II. Hadwiger’s Theorem 
 Integral geometry is defined as the combinatorics of convex bodies.  This 

branch of math has applications in both math and physics.  Hadwiger’s Theorem is one of 

the most physically useful aspects of integral geometry, since it supplies morphological 

descriptors for any additive, rotation-invariant system.  Before presenting Hadwiger’s 

Theorem, I will provide definitions and useful background material.    

 

i. Background and Definitions 

 Denote nK  as the set of all compact convex subsets of Rn.  The elements of 
nK are convex bodies. 

 Convex Body: An object such that any straight line segment drawn within the 

object is enclosed.  Examples of convex bodies: squares, circles, ellipses.  Examples of 

non-convex objects: conjoined circles, figure eights.  

 Valuation:  A function that maps from a set of convex bodies to a real number 

that also satisfies the following conditions:  

 [1] 

 [2] 

for convex bodies A and B.  A function that satisfies the above conditions is referred to as 

additiveIn many systems energy could be considered a valuation, since energy is rigid-

motion invariant, additive, and elicits a scalar value for a convex body in a given system.    

 Euler characteristic, χ: Topological descriptor: qualitatively, the number of 

distinct bodies.   

 [3] 
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 Minkowski functionals, Mν: Morphological descriptors of a system. 

[4] 

 

where A is any convex body, ν goes from 0 to the dimension of A, ων is the volume of a 

unit ball, Eν denotes the ν-dimensional plane, and dµ(Eν) is a normalization factor.  The 

above equation can be read as the Euler characteristic of the intersection of a convex 

body with the ν-dimensional plane taken over all orientations.  Here is a simple example 

to illuminate this formula.   

A=                                                                                   

                                                                       E2 (2-d planes) over all orientations 

 

M2 = 2( )A E Euler� � �� (A)=1 

  rep. of E1 (lines) over all orientations       

 

M1 = 1( )A E� � ��  Boundary(A)=perimeter                                                           

 

M0 = 0( )A E area� � �� (A)=Area of A, since E0 is a point taken over all orientations 

    

 Hadwiger’s Theorem: Any additive, rotation and translation invariant 

valuation, µ, of a convex body from the set of convex bodies can be written as a 

superposition of the d+1 Minkowski functionals.  Mathematically, that is  

     

d

i=0
µ(L) = i ic M� ,    [5] 

where nL K� . 

 

ii. Applying Hadwiger’s Theorem to Non-Additive Systems 
 Now that we have a working definition of Hadwiger’s Theorem, it is evident 

that the theorem would be extremely difficult to generalize to non-additive systems.  The 

additive definition of valuation is an essential aspect of the theorem.  One would need to 

( ) ( ) ( ),M A A E d E
� � �
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create another branch of integral geometry that dealt specifically with non-additive 

functions that map from convex bodies to real numbers.  After searching through the 

relevant literature, no such branch exists.  Because the experimental data shows that the 

intrinsic volumes from Hadwiger’s theorem are useful in non-additive systems, 

generalizing integral geometry would be exciting.  However, it became apparent that it 

would not feasible for a summer project, so I instead attempted to apply Hadwiger’s 

theorem to physical situations.       

 

iii. Applications of Hadwiger’s Theorem 

 To illustrate the manner in which physicists use Hadwiger’s theorem, I have 

outlined a general example.  The first step in utilizing Hadwiger’s Theorem is to find a 

rigid motion invariant system that is also additive.  The beauty of the theorem is that it 

has the potential to explain complicated situations efficiently and accurately.  There are  

however not many fresh systems that satisfy the three conditions set out by Hadwiger, 

which was a major problem for my project, as will be discussed later.     

 Let us suppose that we have a physical system and valuation that both satisfy 

Hadwiger’s theorem.  We choose a valuation in the system that is both rigid-motion 

invariant and additive.  In three dimensions, we can now write the energy of the system 

as     

   µ(K)=c0V0+c1V1+c2V2+c3V3,            [6] 

 

where K is a convex body that we wish to study, V0 is volume, V1 is surface area, V2 is 

boundary curvature, and V3 is Euler characteristic.  The physicist determines the value of 

the energy experimentally using previously-known Minkowski functionals.  From there, 

one can calculate the ci’s.  Once the ci’s are known, equation (6) becomes extremely 

useful in either determining the energy from the intrinsic volumes, vice-versa, or some 

combination of the two.  With very little calculation, integral geometry allows us to 

completely determine a given system.     

 Specific applications abound and are found readily in current literature in 

cosmology and statistical mechanics [1, 2, 7].  One such example given by K. R. Mecke 

in [2] exemplifies how integral geometry can be used to calculate the percolation 



 5

thresholds in porous materials.  The percolation threshold is the critical volume density of 

pores that percolates.  The goal of integral geometry in terms of analyzing porous 

materials is to describe macroscopic transport properties, such as the diffusion constant of 

the material via the morphology of the pores.  Thus far, the most successful theory in 

finding transport properties of objects relies upon the observation that the Euler 

characteristic goes to zero near the critical threshold.  Unlike the two-point correlation 

function which offers no information about the topological structure of a system, integral 

geometry yields the Euler characteristic and has thus become a more commonly used in 

this area.  A plethora of other applications exist, and, since I wouldn’t be able to 

generalize Hadwiger’s theorem, my advisor and I began looking for systems that would 

satisfy Hadwiger’s theorem and benefit from a simple description dependent on its 

morphological characteristics.   

 

iv. Finding a system 
 My advisor and I came up with a variety of ideas for systems that could be 

explored with integral geometry such as the Ising Model, the torsion pendulum, and the 

shape of ice crystals in clouds.  We were unsuccessful, however, in finding a way to 

extend integral geometry to these systems.  They all violated one of the three 

requirements (rotational invariance, translational invariance, additivity) to satisfy 

Hadwiger’s theorem.  In essence, the beauty and simplicity of Hadwiger’s theorem could 

not be applied to complex systems because complex systems are not often additive and 

rigid-motion invariant.   

 The utility of the theorem in other areas led us to believe that it could be useful 

in situations that have yet to be explored.  But the conditions to apply the theorem are so 

stringent that we could not find a physical system outside of those that have been studied 

to apply integral geometry.  So until we found a system that was Hadwiger-applicable, I 

had no project to work on.  Thus, my advisor suggested that I create a simulated 

annealing program and that is the research project with which I will finish the summer. 
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III. Concluding Remarks 
 I began my project studying the details of integral geometry with the hope that I 

could either generalize Hadwiger’s theorem or simplify a complex system using integral 

geometry.  Neither of those two ideas worked.  The first was unreasonably difficult, since 

I would have had to create a new branch of mathematics that generalized valuations to 

include non-additive systems.  The second idea seemed reasonable, but we could not find 

a system that satisfied Hadwiger’s theorem and was complex enough to study.  My 

advisor therefore suggested that I create a simulated annealing program, which I am in 

the process of refining and testing.    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7

Works Cited 
 

1.) Mon. Not. R. Aston. Soc. 297, 355-365 (1998) 
2.) Mecke, K.R. “Additivity, Convexity, and Beyond.” Statistical Physics and Spatial 

Statistics.  Springer-Verlag, Berlin: 2000.   
3.)  Sheth, Jatush V. “Morphology of Mock SDSS Catalogues.” arXiv: astro-

ph/0310755. 
4.) Arns, C. H., et. al. “Euler-Poincare characteristics of classes of disordered media.” 

Phys. Rev. E, Vol. 63, 031112. 
5.)  Klain, Daniel A. “A Short Proof of Hadwiger’s Characterization Theorem.” 

Mathematika, 42 (84): 329-339 Part 2, Dec. 1995. 
6.) Arns, C.H. et. al.  “Reconstructing complex materials via effective grain shapes.”  

Physical Review Letters, 91 (21): Art. NO. 215506, 21 Nov 2003.   
Mecke, K. R. “Integral Geometry in Statistical Physics.”  International Journal of 
Modern Physics B, Vol. 12, No. 9 (1998) 861-899.   


