Improving Resolution for the KATRIN Detector Prototype

By Tabatha Spencer

Ursinus College, Collegeville PA CENPA, University of Washington

With special thanks to Keith Rielage, Peter Doe, Greg Harper, Sean McGee, Lesley Reece and the CENPA EWI Group

Basic Outline

• KATRIN

- Purpose
- Schematic

Equipment

- Silicon Detector
- Electron Gun
- Vacuum System

Resolution Techniques

- Dead Layer Determination
- Noise reduction
- Cooling Designs
 - Attempts
 - Future plans

KATRIN

(Karlsruhe Tritium Neutrino Experiment)

- •Next generation tritium beta-decay neutrino experiment
- Direct measurement of neutrino mass
- •Collaboration in Karlsruhe, Germany
- •Projected start date in 2006

http://www-ik1.fzk.de/tritium/

High Resolution

tritium *B*-decay and the neutrino rest mass

$$^{3}\text{H} \rightarrow ^{3}\text{He}$$
 + e⁻ + $\overline{\nu}_{e}$

superallowed

half life : $t_{1/2}$ = 12.32 a β end point energy : E_0 = 18.57 keV

http://www-ik1.fzk.de/tritium/overview/index.html

Silicon Detectors

- Testing resolution refining techniques on less sophisticated technology first
- Initial Silicon Pin Diode
- Intermediate Silicon Drift Diode
- Final Segmented Pin Diode

Electron Gun and Vacuum System

Initial Measurements

8-Bit Bias

Scale Calibration

Dead Layer Measurement

- Small amount of energy lost on surface of the detector
- Correction needed
- Peak energy compared at multiple angles

Dead Layer Results $\Delta E = dE/dx * \Delta x_w * (1/cos\alpha - 1)$

- Can solve for the dead layer thickness
- $\Delta x_{W} = 123 \text{ nm}$
- Agrees well within error of previous measurement

Next Step: Cooling

- Try to significantly reduce amount of noise
- Clear precise peaks required
- Operating at low temperatures is a good way to do this
- Inexpensive and available devices:
 - Chiller
 - Peltier Device

Cooling Plan

Repeated Failure and Death

Current and Future Cooling Plans

- Scrapped Peltier plans till replacements available
- Go straight from cold rod to detector
- Look for better flexible connectors than braid
 - Multiple braids
 - Copper foil
 - Other possibilities?

