The Renormalization of Effective Field Theory for Nucleon-Nucleon Interactions

Presented by Sam Leitner Wesleyan University Advisor: Andreas Nogga

Quantum Chromo Dynamics (QCD)

Gluons: exchange particles for 3 quarks
 Strongly self interacting, produce own field

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \bar{\psi}_{e} \gamma^{\mu} [\partial_{\mu} + ieA_{\mu}] \psi_{e} - m_{e} \bar{\psi}_{e} \psi_{e} , \qquad \mathcal{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} - \sum_{n} \bar{\psi}_{n} \gamma^{\mu} [\partial_{\mu} - igA^{\alpha}_{\mu} t_{\alpha}] \psi_{n} - \sum_{n} m_{n} \bar{\psi}_{n} \psi_{n}$$

$$\mathcal{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\nu} + C^{\alpha}_{B\gamma} A^{B}_{\mu} A^{A}_{\nu}$$

$$F^{\alpha}_{\mu\nu} = \partial_{\mu} A^{\alpha}_{\nu} - \partial_{\nu} A^{\alpha}_{\nu} + C^{\alpha}_{B\gamma} A^{B}_{\mu} A^{A}_{\nu}$$

Large Coupling Constant

- Non-perturbative complex pictures important
- ->Interactions analytically intractable turn to numerics ... QCD lattice simulations:
 - Computationally expensive (4d =time+space)
 - Fundamentally limited = "Sine Problem"

What now?

 Lattice simulations are difficult or impossible for Nucleon-Nucleon scales.
 QCD perturbation theory is useless for the small energy scales of nuclear systems.
 Towards something less fundamental, but more useful ...

An Effective Theory

NEW "Fundamental" Particles

Exchange particle? Pion is in the correct energy scale (50-150MeV)

Particle		Rest
and		Mass
Symbol	Makeun	(MeV)
Pion: π^+	ud	139.6
Pion: π^0	$(uu+dd)/(2^{1/2})$	135
Kaon: 🖍	uo	493.7
Kaon: Ks ⁰	*	497.7
Kaon: K ⁰	*	497.7
	(uu+dd-	
Eta: η⁰	2ss)/(6 ^{1/2})	548.8
Rho: ρ⁺	ud	770

What we care about now = Feynman diagrams of pion exchange:

Interaction Diagrams

 Short Distance = "Contact Interaction"
 Phenomenological understanding only - modeled as a power series expansion (here in momentum).
 (p and p' are the momentum of each nucleon)

Long Range = Pion Exchange

Diagram Ordering & Power Counting

Infinite number of possible exchange diagrams.
 Approximate by looking at most important.
 Chiral Perturbation Theory - Important diagrams have lower order momentum dependence
 Momentum is small (higher power means smaller number)
 Count power of the momentum dependence ="power counting"

New order of momentum dependence for each vertex.

Eg:

Weinberg - Infrared Enhancement

For small momentum (low energy = infrared) the free nucleon motion between successive pion exchanges is important.

- Weinberg need to iterate the interaction to include what happens in between
 - Iterated Interaction =
 Interaction -> Propagation->Interaction....
 - Reformulation of the Schrodinger eq:
 - $T=V+VG_0T$

Iterated interaction -> Potential!

Iterated Pion Exchange

One Pion (leading order) Image: One Pion (leading order)

$$V(\vec{p}, \vec{p}') = -\frac{1}{(2\pi)^3} \left(\frac{g_A}{2f_\pi}\right)^2 \tau_1 \cdot \tau_2 \frac{\vec{q} \cdot \sigma_1 \vec{q} \cdot \sigma_2}{(\vec{q})^2 + m_\pi^2}$$

Two Pion (next to leading order)

Contact Interaction*

$$\sum_{i=0}^{\infty} c_i q^{2(i+l)}$$

$$V_{2\pi} = -\frac{1}{(2\pi)^3} \cdot \frac{t_1 \cdot t_2}{384\pi^2 f_\pi^4} \cdot L(q) \cdot \begin{bmatrix} 4m_\pi^2 \cdot (5 \cdot gA^4 - 4 \cdot gA^2 - 1) \\ + q^2 (23 \cdot gA^4 - 10 \cdot gA^2 - 1) \\ + \frac{48 \cdot gA^4 \cdot m_\pi^4}{4m_\pi^2 + q^2} \end{bmatrix}$$
$$-\frac{1}{(2\pi)^3} \cdot \frac{3 \cdot gA^4}{384\pi^2 f_\pi^4} \cdot L(q) \cdot \left[(\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q}) - q^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right]$$
$$L(q) = \frac{1}{q} \sqrt{4m_\pi^2 + q^2} \ln \left(\frac{\sqrt{4m_\pi^2 + q^2} + q}{2m_\pi} \right)$$

*contact order is angular momentum dependent (ℓ) ~ (q') $^{\ell+2}$

Summary

- Effective theory of nucleons exchanging pions (ignore quarks and gluons).
- Power counting of momentum to determine importance of different exchange pictures.
- Iteration of each exchange picture to create a potential.
- Now calculate by integrating the potentials using a reformulation of the Schrodinger eq.

Calculations - Renormalization

Renormalization of one pion 1/r³ and two pion 1/r⁵

 Want to perform integral to infinity - unphysical and divergent. Instead create a high momentum (short distance) cutoff:

$$I(\alpha,\beta) = \int_{0}^{\infty} F(k,\alpha,\beta) dk \to I(\alpha,\beta,\Lambda) = \int_{0}^{\Lambda} F(k,\alpha,\beta) dk$$

Absorb functional form of cutoff dependence into physical constants... get a consistent answer:

$$I(\alpha,\beta,\Lambda) \to I(\alpha(\Lambda),\beta(\Lambda)) = \int_{\alpha}^{\Lambda} F(k,\alpha,\beta) dk$$

Match data at a point to fix constants at a cutoff.

The Problem

Total Potential: Potential = $V_{1\pi} + V_{2\pi} + \dots + \sum_{i=0}^{n} c_i q^{2(i+l)}$ • Leading order for •=0 L.O. Term = $V_{1\pi} + c_0 + c_1q^2$ • But leading order for $\bigcirc =1$: L.O. Term = $V_{1\pi} + c_0 q^2$ Recall contact interaction momentum order ~ 2(i+•) Not enough constants to renormalize for higher angular momentum •=1 already lost c_1 in leading order Too few constants to renormalize at given order Are Weinberg's method and power counting inconsistent?

Inconsistent? Yes. Make the Best of it

(1) Angular Momentum $\bullet = 0$

Good agreement with data so use it.

(2) Angular Momentum \bigcirc > 0

Find a cutoff range with little variability and fit experiment (that's the best Weinberg power counting gives - any error is from only including low order in q)

Or Make it Better

Sometimes for • > 0 cutoff dependence is too strong to pretend we have renormalized equation even at low energies (further from the cutoff).
 Note ³P₀ especially

Phase vs. Cutoff for several energies and momentum

- Fix = artificially boost the importance of "lower order" contact interactions by bringing them up to the unrenormalized order
 - They once again provide constants for renormalization

For
$$= 1L.O.$$
 Term $= V_{1\pi} + c_0 q^2 \Rightarrow L.O.$ Term $= V_{1\pi} + c_0 q^2 + c_1 q^4$

Despite the q⁴ strictly being of higher order

Results/Conclusions

One pion results look good
 even for high • ->
 Future Work

Insert two pion exchange and check accuracy

 Check whether cutoff dependence can be absorbed into a single contact interaction (single constant)

Check high and low partial waves against experiment

 Extend results to a 3 nucleon system (which is at leading order basically the same)

Acknowledgements

Many Thanks To: Fellow REUers NSF and UW REU Program Andreas Nogga