#### **Precision Muon Physics**

Peter Kammel

Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington http://www.npl.washington.edu/muon





MuSun

Muon g-2





#### Outline

- Introduction
- MuSun
   Weak few nucleon reactions
   and astrophysics
- Muon g-2
   Search for New Physics



#### The Standard Model



#### Standard Model Equations

- Predictions to extremely high precision
- Last 30 years experiments tried to find cracks, to guide deeper understanding
- Strong interaction (Quantum Chromodynamics) still difficult to calculate (Lattice QCD)



## What's special about Muons?

| Property                                                                                                                             | Symbol                                                       | Value                                                                                                                                                               | Precision                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Mass<br>Mean lifetime<br>Anom. mag. moment<br>Elec. dipole moment                                                                    | $egin{array}{l} m_\mu \ 	au_\mu \ a_\mu \ d_\mu \end{array}$ | 105.658 3715(35) MeV<br>2.196 9811(22) $\times$ 10 <sup>-6</sup> s<br>116 592 091(63) $\times$ 10 <sup>-11</sup><br>$<$ 1.9 $\times$ 10 <sup>-19</sup> $e \cdot$ cm | 34 ppb<br>1.0 ppm<br>0.54 ppm<br>95% C.L.                             |
| Branching ratios                                                                                                                     | PDG average                                                  | B.R. limits                                                                                                                                                         | 90% C.L.                                                              |
| $\mu^-  ightarrow e^- ar{ u}_e  u_\mu \ \mu^-  ightarrow e^- ar{ u}_e  u_\mu  \gamma \ \mu^-  ightarrow e^- ar{ u}_e  u_\mu e^+ e^-$ | ≈100%<br>1.4(4)%<br>3.4(4) × 10 <sup>-5</sup>                | $\mu^-  ightarrow e^- \gamma$<br>$\mu^-  ightarrow e^- e^+ e^-$<br>$\mu^-  ightarrow e^-$ conversion                                                                | $5.7 \times 10^{-13}$<br>$1.0 \times 10^{-12}$<br>$7 \times 10^{-13}$ |

Summary of measured Muon properties and selected decay rates and limits.

#### • Precision physics @ Intensity frontier

- Muon decay: basic structure of weak interactions
- Muon capture probes nuclear weak interactions, MuSun
- Quantum loop sensitivity to new physics  $(m_{\mu}/m_{e})^{2}$  , Muon g-2
- Charged Lepton Flavor violation
- Muon collider, MSR, etc



#### How are they generated?



#### Paul Scherrer Institut

Villigen, Switzerland



#### PSI and "our" Beamline







#### MuSun Experiment Precision measurement of SM parameters





## Muon capture on the deuteron



#### > Motivation:

- Low energy effective field theory of QCD has been developed. This theory describes protons, neutrons and nuclei consistent with the fundamental QCD.
   Parameters have to be determined from experiment.
- Prediction for basic astrophysics reactions depend on this knowledge.
   "Calibrate the Sun"



## Calibrating the sun and neutrino interactions 10



 $v_e d \rightarrow p p e^-$  (CC)  $v_x d \rightarrow p n v_x$  (NC)



The rates for both reactions cannot be determined at terrestrial conditions. The calculation is challenging.

Calibrate via the related *muonic* reaction:

 $\mu d \rightarrow n n \nu$ 

But existing measurements poor !





n n

#### Experimental technique



- $\mu d \rightarrow nn\nu$  rare, only 0.1% of  $\mu \rightarrow e\nu\nu$
- neutron detection not precise enough

#### Lifetime method



$$\Lambda_{d} = \lambda_{-} - \lambda_{+}$$

measure  $\lambda_{-}$  to 10ppm



#### **Experimental technique**

Muonic atoms  $m_e/m_\mu$  smaller than ordinary atoms

# $\begin{array}{l} \text{Muon-catalyzed fusion} \\ \text{of } \text{dd}\mu \text{ molecules} \end{array}$

Requires energy to overcome Coulomb repulsion





## MuSun Experimental Strategy





MuSun

#### TPC





#### Events in TPC





Energy Deposition of Charged Particles





#### Muon g-2 Experiment at Fermilab Challenging the Standard Model









## Spinning top and Larmor precession

Classical relation for atom

- magnetic moment
- angular momentum

• g factor

$$\mu = g \times \frac{q}{2m}L$$

L = rmv

 $\mu = IA = \frac{qvr}{2}$ 

**g=1** 

Larmor precession in field B

$$\omega = \frac{\mu}{J}B = g \times \frac{qB}{2m}$$





#### Quantum Mechanics and g-2

Spin ½ particles described by Dirac equation: g=2

Higher order QED corrections



 $a_{\mu}(\text{Exp}) = 1\,165\,920\,91\,(63) \times 10^{-11}$  (0.54 ppm)





### **Beyond Standard Model**

Precise knowledge of  $a_{\mu}$  will aid in discrimination between a wide variety of standard model extensions

- Supersymmetric models
- Many others: extra dim, compositeness...
- Dark photon
- The "Un-invented"







#### Key elements of g-2 measurement

Polarized muons

~97% polarized for forward decays

• Precession proportional to (g-2)





•  $P_{\mu}$  magic momentum = 3.094 GeV/c

$$\vec{\omega}_{a} = -\frac{q}{m} \left[ a_{\mu} \vec{B} - \left( a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

 Parity violation in the decay gives average spin direction











# Taking the ring for a spin





# Segmented PbF<sub>2</sub> Calorimeter with SiPM Rea<u>dout</u>

SiPM boards optimized to produce PMT-like pulses to exploit short pulse duration of Cherenkov crystals (relevant: pileup)

μ





- p. 24



#### Muon (g-2) at Fermilab



