Chilling Tales about Quantum Gases

Subhadeep Gupta UW NSF-INT Phys REU, 8th August 2016

Quantum Degeneracy in a gas of atoms

and ~ non-interacting

Bose-Einstein Condensation (BEC)

 $= \frac{h}{\sqrt{2\pi m k_{\rm B} T}} \quad n = \frac{N}{V}$ $n\lambda_{\rm dB}^3 << 1$ $\lambda_{
m dB}$.

Quantum Phase Space Density

 $n\lambda_{\rm dB}^3 \sim 1$

Relevant Ultracold Temperatures on the Log Kelvin Scale

1997 NOBEL

LASER COOLING

Steven Chu Claude Cohen-Tannoudji William D. Phillips "for development of methods to cool and trap atoms with laser light"

2001 NOBEL BEC

Eric A. Cornell

Carl E. Wieman

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates".

Laser Cooling???

"Workhorse" of laser cooling

Atom Source ~ 600 K; UHV environment

=> COOLING !

(Need a 2 level system)

Evaporative Cooling in a Conservative Trap

Evaporative Cooling in a Conservative Trap

Depth ~ Int/ Δ ; Heating Rate ~ Int/ Δ^2

Making a Quantum Gas

Making a Quantum Gas

"Knobs" for Quantum Engineering

In ultracold, dilute gases, using e-m fields, can control (relatively) easily

Temperature & density Dimensionality Magnetization Magnitude & sign of the "charge" Optical crystals (tunnel/on-site), CM models, new systems Chemical structure – form molecules

Different Quantum Matters

Quantum degenerate Fermi & Bose Gases

Contrast Interferometer with Yb BEC

–85µm–

Contrast Interferometer with Yb BEC

A. Jamison et al. PRA 84, 043643 (2011)

Photon Recoil for the Fine Structure Constant, $\boldsymbol{\alpha}$

Photon Recoil Measurement using Atomic Interferometry (currently x10 worse)

Precision Measurements of the fine structure constant, α

g/2: α from measurement of electron μ and *complex* QED theory Rb, Cs: Atomic Physics route to α . (Also 2011 meas. in Rb at 0.7ppb) α in CM: quantum Hall conductance, Josephson junction frequency α comparison test of QED, sensitive to hadronic contribs, new physics

> Our Yb BEC route to α: Targeted at < 0.1 ppb. (High source coherence, high symmetry of interferometer)

Acceleration by Bloch Oscillation

12 photon recoils

200 photon recoils observed

Bose-Fermi Mixtures

⁴He-³He mixtures. Strong B-F repulsion. B-F superfluid not yet realized

Several degenerate B-F ultracold gas mixtures: {⁷Li,²³Na,^{85,87}Rb,⁴¹K,¹³³Cs,¹⁷⁴Yb}-⁶Li {²³Na,⁸⁷Rb,⁴¹K}-⁴⁰K 2-isotope Yb, Sr, Dy,Cr; ⁸⁷Rb-¹⁷³Yb

Very recently B-F superfluids in atomic systems in ⁷Li-⁶Li, ¹⁷⁴Yb-⁶Li, ⁴¹K-⁶Li NEW QUANTUM SYSTEM!

Strong Interactions in the ⁶Li Fermi system

Fermi gas physics; High Tc Fermi superfluid; BEC/BCS crossover across wide Feshbach resonance; Unitary Fermi Gas. Universal Physics

Li₂ Fermionic Superfluidity

¹⁷⁴Yb-⁶Li Bose-Fermi Dual-Superfluid

¹⁷⁴Yb-⁶Li Bose-Fermi Dual-Superfluid

Characteristics at Unitarity (832G)

$$\begin{split} &\mathsf{N}_{\text{Li}} = 8 x 10^4 \ \text{N}_{\text{Yb}} = 1.1 x 10^5 \\ &\mathsf{T/Tc} < 0.5 \text{ for bosons and fermions} \\ &\mathsf{Dual-superfluid lifetime} \sim 1 \text{ sec} \\ &\text{``Pancake'': } \omega_{\text{Yb}} / 2 \pi = &(26,388,59); \ \omega_{\text{Li}} = 8 \omega_{\text{Yb}} \\ &\mathsf{R}_{\text{Li}} / \mathsf{R}_{\text{Yb}} = 3 \\ &\mathsf{n}_{\text{Li}} = 1.4 x 10^{13} / \text{cm}^3 \text{ , } \mathsf{n}_{\text{Yb}} = 3 x 10^{14} / \text{cm}^3 \\ &\mathsf{Interspecies MF} \sim 0.1 \text{ of } \mu_{\text{B}}, \ \mu_{\text{F}} \end{split}$$

R.J. Roy et al. arXiv:1607.03221 (2016)

Yb BEC oscillating in Harmonic Trap

BEC of $5x10^4$ atoms Trap v = (26,388,59) Hz z-Radius = 1µm Chemical potential (µ) = 60nK Speed of sound (vs) = 2.4 mm/s

Dipole (c.m.) oscillation: frequency = 388 Hz, amplitude = 0.5 μ m, max velocity = 1.3 mm/s << v_{crit,BF}

Yb BEC oscillating in Li Fermi SF + Harmonic Trap

 \mathcal{M}

 $\omega/2\pi = 381.3(4)$ Hz $\omega/2\pi = 387.7(3)$ Hz

δω/ω = -1.7(2)%

Mean Field Coupling ~ g $n_F a_{BF}$ Sign of a_{BF} is positive Magnitude agrees with MF prediction

Summary & Prospects with Yb-Li

Yb-Li B-F superfluid, Dipole and Scissors Osc. Elastic coupling, angular momentum exchange

Further collective modes, damping, sound, exotic states

Mixed SF Phase Diagram in Optical Lattice

Impurity Probe and Thermometry (ω_{Li}/ω_{Yb} ~ 8)

Controllable Interspecies Overlap YbLi molecules in a 3D optical lattice

UW Ultracold Atoms Lab I

2-species Magneto-Optical Trap (Ytterbium and Lithium)

UW Ultracold Atoms Group (summer 2015)

Ben Plotkin-Swing Ricky Roy Katie McAlpine Alaina Green Dan Gochnauer Ryan Bowler Arron Potter DG

