
1

Comparison of Jet reconstruction Algorithms
Miner Jacob

Abstract— Jet algorithms
Index Terms— High Energy Physics, Jets, kT , Cone, Jet Algo-

rithm

I. INTRODUCTION

IN any process producing colored objects, namely quarks
and gluons, the short and long distance physics are dis-

tinctly different. On the scale of a few fermi, 10−15 m, the
colored objects are free to move about, however; on the scale
of a few centimeters the colored objects must be confined into
color singlets. This process of quarks and gluons showering,
hadronization, forms many mesons and baryons which can
then decay and form the final state objects measured in
our detectors. The spray of hadrons, known as jets, provide
our link between the short scale physics and the final state
observations.

The final state objects we measure are never nicely formed
into well separated jets. Effects like detector smearing and
inefficiency add to our uncertainty in grouping particles into
jets. The fact that there is no one-to-one correspondence
between the short distance physics and the final hadronized
state complicates the definition of jets. In effect there is
no single definition of a jet that is correct; our most strict
requirement is that we must use a definition that is consistent
with both theory and experiment.

II. ALGORITHM TYPES

Experimental data begins with a large number of particles
found by the detector and a list of their four-momenta. The
particles’ energy, pT and position are obtained from this
information. We use this to define the coordinate system φ =
azimuthal angle and rapidity y = frac12 log(E+pL

E−pL

) or more
commonly pseudorapidity η = − ln(tan(θ

2
)). Out of this state

we must use algorithms, based on a specific jet definition,
to reconstruct the jets. The two main jet definitions in use
are the Cone Jet and kT Jet based algorithms. The cone jet
algorithms assume that jets will show up in roughly circular
regions in the angular plane of the calorimeters and seeks to
find stable regions of energy. The kT jet algorithms attempt
to locate clusters of particles which are close in momentum
space and thus are akin to a final state shower which will
be roughly collinear. Though both definitions work well with
theory, their implementations and quirks in practice leave room
for optimization.

A. Cone Algorithm
The cone-based algorithms begin by defining the calorime-

ter towers above a pre-defined value (typically 1 GeV) as

This work was funded by NSF and sponsored by UW

Fig. 1. Difference in jet Structure for Cone and kT algorithms. The circle
represents a cone algoithm’s stable jet, the dashed line represents a stable kT

jet and the small ovals represent energy deposited in the calorimeter. Notice
that the Cone algorithm uses a rigid boundary whle the kT algorthm produces
more amorphous jets.

seeds, or places to initially put cones. For consistency with
perterbation theory we need to look everywhere, though that
can be computationally inefficient and it is rarely done in
practice. The algorithm then analyzes each cone by calculating
the E-scheme centroid,

k ⊂ C iff
√

(yk − yC)
2
+ (φk − φC)

2
≤ Rcone,

pC = (EC ,−→p C) =
∑

k⊂C

(Ek,−→pk)

yC ≡
1

2
ln

EC + pz,C

EC − pz,C

, φC ≡ tan−1 py,C

px,C

.

of all the energy within specified cone radius, where typically
R = 0.7. If ηcone = ηcentroid and φcone = φcentroid then it
is defined to be a stable jet. If the cone’s centroid is not its
center, then the cone is moved to the centroid and iterated.
This process is repeated until we have found all final state
jets.

B. Cone Algorithm Problems
Though the initial definition is consistent with theory, we

find that the introduction of seeds leads to an infrared sensi-
tivity in perturbation theory. Also, the Cone jet Algorithm has
a problematic splash-out effect, as can be seen in 1. We see
that nearby regions of energy that ”should” be in the jet can be
excluded from the stable jet found. Finally, there is the issue
that of where to put the energy if two cones overlap. Though
all jet algorithms have their own quirks, resolutions to these
issues were needed for more accurate results.

C. Cone Algorithm Fixes
The resolutions to these issues are relatively subtle changes

in the cone jet algorithms. Overlap issue can be resolved

2

Fig. 2. Splash-in or vacuum effect of the kT jet algorithms.

by an additional parameter, fmerge, which determines what
percentage of the overlap energy must be in one jet before
we put all of the energy into it. Otherwise we will put the
individual pieces of energy into their respective closest jet. To
”solve” the infrared sensitivity we can add a step after finding
stable cones, we search for a stable cone at the midpoint of
two cones that have separation R<d<2R. Finally, a more
robust solution to the problems cause by seeds is to place
seeds everywhere, or at least at every calorimeter cell. Though
these solve many of the largest problems there remain quirks
with the cone algorithm.

D. kT Algorithm
The kt jet algorithm uses the knowledge that final state

particles in a shower are largely collinear ie. have small
transverse momentum between their constituent particles. The
algorithm begins by creating a list of the momentum-space
distance and the distance from the beam as,

dij = min(k2
ti, k

2
tj)R

2
ij/D2

R2
ij = (yi − yj)

2 + (φi − φj)
2diB = k2

ti

using the resolution parameter, D, to define roughly how large
jets can become. It then finds the minimum of this list and
if the distance is between two objects it merges them, if the
distance is a beam distance then it calls this object a jet. This
definition is theoretically motivated and consistent though it
has seen far less use at hadron colliders and its systematic
uncertainties are less well understood than those of the cone
jet algorithms.

E. kT Algorithm Problems
The errors inherent in the kT jet algorithms are primarily

due to its splash-in effect, or the fact that it tends to include
lots of soft particles in the jet. In 2 the soft energy to the
left is included in the kT algorithm’s definition of the jet.
When compared to cone algorithms, kT algorithms have the
tendency to combine more energy into jets and the splash-in
effect is hard to characterize between similar events. Thus,
making corrections to the data analyzed with a kT algorithm
is harder to do in a consistent manner. kT jet algorithms do
not have a strict guideline for the final shape of their jets and
this can be both a positive and a negative fact due the the
potentially amorphous jets that are produced.

III. ALGORITHM TIMING

Given any jet algorithm, it is important to understand both
its quirks in reproducing jets as well as the time it takes to
construct the jets from data. With the number of particles per
even, N, of the order 102 in Tevatron it was less important
for extremely optimized algorithms. In the LHC we will have
N ∼ 103 and we will also have ∼20 events per collision, thus
the speed of jet algorithms needs strong consideration so that
the computations can keep up with data.

A. JetClu Subprocesses
The run 1 cone algorithm JetClu is a simple cone jet

algorithm implementing seeds and without any of the afore-
mentioned corrections to cone algorithms. The four main
phases of the algorithm are

1) finding seed towers
2) Preclustering
3) Finding Stable Cones
4) Split/Merge

In the figure 4 with N ∼ 102 the seed tower phase
takes the longest and scales roughly as N. We find that
preclustering takes a negligible amount of time and that
finding stable cones scales roughly as N 1.5. The dominant
process for N >103 is the split/merge phase, which scales
roughly as N2.3. Preclustering, a time saving technique that
is actually physically motivated, was removed from JetClu
when the Midpoint algorithms were written for CDF and DØ
run 2. Preclustering assumes that energy is inherently spread
out amongst neighboring calorimeter cells and groups cells
together. It is important to notice that the preclustering has a
positive effect on the final two stages, the reduction in cones
passed on reduces the overall time to construct jets.

B. Midpoint Subprocesses
The midpoint algorithms follow a similar pattern and have

3 main stages
1) Find stable cones from seeds
2) Find midpoint cones
3) split/merge

whose timings are shown in 5. For N ∼ 102 finding stable
cones from seeds is dominant and scales as N 2.5. Finding
midpoints scales roughly as N 3 and the dominant process for
N ∼ 103 is again split/merge that scales as N 3.5. In both the
CDF and DØ implementations of this algorithm we find that
it is slower than the JetClu implementation.

C. Fastjet
Fastjet ?? is an optimized version of the kT jet algorithm.

For N > 103 fastjet scales as N ln(N) and a more robust
version scales as N2. This algorithm’s implementation of
the CGAL libraries for efficient list management reduces
the time necessary to combine particles and update the list.
The effective time difference between Fastjet and the cone
algorithms is only noticeable with N >103 though above this
region the savings can be an order of magnitude or more. This
begs the question, can we implement a similar technique on the
cone algorithms to reduce their scaling to roughly N ln(N)?

3

0.01

0.1

1

10

1e+02

1e+03

1e+04

1e+05

1e+02 1e+03 1e+04 1e+05

Ti
m

e
to

 P
ro

ce
ss

 (s
)

Number of Particles(N)

Jet Algorithm Timing

Fastjet NlnN
Fastjet N2Tiled

a*N*Ln(N)
b*N2

JetClu
CDF Midpoint

D0 Midpoint

Fig. 3. Timing versus the number of particles per event, N, for various jet algorithms.

0.01

0.1

1

10

1e+02

1e+03

1e+02 1e+03 1e+04

Ti
m

e
to

 P
ro

ce
ss

 (s
)

Number of Particles(N)

JetClu subprocess Timing

Seed Towers
a*N**1.0

PreClusters
b*N**.28

Stable Cones
c*N**1.5

Split/Merge
d*N**2.34

Fig. 4. Timing of the four subprocesses of the JetClu algorithm. The best fit lines give a rough idea of how time scales with N.

4

0.01

0.1

1

10

1e+02

1e+03

1e+02 1e+03 1e+04

Ti
m

e
to

 P
ro

ce
ss

 (s
)

Number of Particles(N)

CDF Midpoint subprocess Timing

Stable Seeds Cones
a*N**2.6

Midpoint Cones
b*N**3

Split and Merge
c*N**3.6

Fig. 5. CDF Midpoint subprocess timings, shows how the time of the various subprocesses scales with N.

IV. CONCLUSION

Throughout all of this discussion one must realize that
jets will play an extremely important role in the LHC. The
p+p+ collider will produce large number of events with ∼20
interactions per event and N ∼ 103. Thus the large number of
colored objects will also be produced and thus there will be an
abundance of jets. Thus it is extremely important to have an
efficient jet reconstruction whose uncertainties are small and
easily corrected. Though there is no right way to define jets
we must have a CONSISTENT jet definition that meshes well
with experiment and theory.

ACKNOWLEDGMENT

Thank you to Steve Ellis, Matt Strassler, Kyle Armour, Jon
Walsh and Rob Schabinger for letting me join their group for
the summer.

REFERENCES

[1] G. Salam and Matteo Cacciari, hep-ph/0512210
[2] S. D. Ellis and D. E. Soper, Phys. Rev. D 48 (1993) 3160 [hep-

ph/9305266]. jets2 S. Catani, Y. L. Dokshitzer, M. H. Seymour and B.
R. Webber, Nucl. Phys. B 406 (1993) 187

[3] Steve Ellis’s web page, http://www.phys.washington.edu/users/ellis/

