High Energy Physics and Jets

Jacob Miner

August 16, 2006

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Outline

- Inside Colliders and Detectors
- What is Phenomenology?
- Data Analysis
- Jets
- Jet Algorithms

Large Hadron Collider

- 14 TeV p^+p^+ collider
- LHC Olympics -
 - community-wide competition
 - given an unknown data set to analyze and explain

Colliders

- Linear or Circular particle accelerators
 - accelerate charged particles using magnets + E-fields
 - either collides 2 beams or a beam with a fixed target
- colliders produce e^{\pm} , γ , gluons, quarks etc.
 - quarks + gluons shower into **jets** - a cone of hadronic particles $(\pi^{\pm,0} \dots)$

– Typeset by $\mbox{Foil}{\rm T}_{\!E\!}{\rm X}$ –

Detectors

- trackers designed to locate charged particles
 - semiconductor based for charged particles
 - pixel tracker for vertex location
- calorimeters designed to measure energy of particles
 - stops all particles except μ , ν
 - inner electromagnetic calorimeter for e, γ
 - outer calorimeter for hadrons

- triggers determines if an event is worth recording
 - Hardware and Software based -programmed to 'know' what is an interesting event (is this a dangerous bias?)
 - Reduces Standard Model background records less than 1 in 10^5 events

Phenomenology

- Goal is to connect theory and experiment
- detection errors e vs. μ
- smearing of the event
- geometry two "holes" on the ends of the detector
- initial state
 - net charge (ie. p^+p^+)
 - net momentum (ie. e^+e^-)

Data

• What does the compiled data look like?

#	typ	eta	phi	pt	jmas	ntrk	btag	$had \backslash em$
1	4	-3.491	6.118	6.92	0.99	25.0	0.0	41.14
2	1	-0.085	1.151	210.39	0.00	-1.0	0.0	0.00
3	6	0.000	3.194	519.76	0.00	0.0	0.0	0.00

- Typ = particle type $0 = \gamma$, ...
- $\eta = \text{pseudorapidity} = -\ln(\tan(\frac{\theta}{2}))$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Data

- $\phi = azimuthal angle$
- $p_t = \text{transverse momentum} \sim \text{p orthogonal to the beam axis}$
- $j_{mass} = \text{invariant mass} \sim \sqrt{p^{\mu}p_{\mu}}$
- ntracks = number of tracks and charge information

Data

#	typ	eta	phi	pt	jmas	ntrk	btag	$had \backslash em$
1	4	-3.491	6.118	6.92	0.99	25.0	0.0	41.14
2	1	-0.085	1.151	210.39	0.00	-1.0	0.0	0.00
3	6	0.000	3.194	519.76	0.00	0.0	0.0	0.00

- btag = (for jets) does the jet contain a b-quark
- $\frac{had}{em}$ = ratio of energy dumped in hadronic and electromagnetic colorimeters

$$-rac{had}{em}>$$
 1 for jets, \ll 1 for γ , e

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Jets

- come from quarks or gluons showering
 - both carry color, which must be confined into color-neutral objects
 - the hadrons can also decay into more hadrons
- inherently amorphous there is **no** strict mapping from the short distance quark/gluon state to the long-distance final state particles

Jet Algorithms

- Need a specific definition to find jets
- Debate what is the most consistent with experiment and theory
 - Cone \sim finds energy within a circular region in the calorimeters
 - KT \sim combines particles using 4momentum as a gauge of proximity

Cone Algorithm

- 1. defines seeds as a calorimeter readings above a pre-defined value (say 1 GeV)
 - technically we should look everywhere but this is simpler
- 2. Sums the energy within a certain radius of each seed
- 3. calculates the cone's centroid
 - if $\eta^{centroid} = \eta^{cone}$ and $\phi^{centroid} = \phi^{cone}$ then this is a jet (ie it is stable)
 - If not we move to the position of the centroid and iterate
- 4. repeated until only stable cones (jets) are left

Cone Algorithm Problems

- What do we do if cones overlap?
- Cone algorithms have a splash-out effect (data effect)
- Seeds cause Infrared sensitivity (perterbation theory)

k_t Algorithm

- 1. combines particles i,j pairwise based on proximity in momentum space (starting with lowest energy)
 - calculates distance for i,j $d_{ij} = min(k_{ti}^2, k_{tj}^2) \frac{R_{ij}^2}{D^2}$
 - $R_{ij}^2 = (\eta_i \eta_j)^2 + (\phi_i \phi_j)^2$
 - distance from the beam, $d_{iB} = k_{ti}^2$
 - finds min. of all d_{ij}
 - if it is between two particles, they are merged
 - if it is between a particle and the beam, we have a jet

k_t Algorithm Problems

• the k_t algorithm has a splash-in effect

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Solutions to Algorithm Problems

- ALL jet algorithms have their own quirks
- Seedless Algorithms \sim place trial cones everywhere
- Split/Merge phase puts energy in one cone based on f_{merge} (ie. which cone has more of the overlapping energy)
- Midpoints for cone \sim search between cones less than 2 cone radii apart

Algorithm Timing

- With so many events occurring and large numbers of particles, processing jets needs to be fast
- Need to understand how time scales with N (the number of particles in an event)
- In particular what part of the algorithm takes the longest and can we optimize this?

Fastjet

• uses geometry algorithms to speed up the process

- \bullet Reduces time from $\mathcal{O}(N^3)$ to $\mathcal{O}(N\ln(N))$
 - KT algorithms take $\mathcal{O}(N^2)$ to compute d_{ij}
 - this is repeated N times for total of $\mathcal{O}(N^3)$
 - Fastjet uses efficient list management (nearest neighbor)

Midpoint sub-process Timing

• 3 main processes

- 1. Find stable cones from seeds
- 2. Find Midpoint cones
- 3. Split/Merge cones

JetClu sub-process Timing

• 4 main processes

- 1. Seed Towers
- 2. Preclusters
- 3. Stable Cones
- 4. Split/Merge cones

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Summary

- For solid phenomenological predictions we need to understand
 - detector geometry, capabilities
 - The model to be studied
 - Properties of the algorithms used
- Jets play an important role in HEP and a precise and **consistent** definition is important to achieve accurate results
- There is NO right answer except that we must match THEORY and EXPERIMENT