Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006

Outline

- Neutrino Physics Background
- Double Beta Decay and the Majorana Question
- Assay Chamber
	- Detector
	- –Shielding
	- Results
- Chamber Simulation
	- Geant4
	- Efficiencies
	- –Comparison to Observation

Neutrino History

- Existence Postulated by Wolfgang Pauli in 1930
	- neutrino explained energy and angular momentum conservation in β- decay
- Electron Neutrino (v_e) first experimentally observed in 1956
- •ν $_{\mu}$ and v_{τ} experimentally observed in 1962 and 2000 respectively

Neutrinos in the Standard Model

- •Weak interaction maximally violates parity
	- Neutrinos only observed as lefthanded
	- –Anti-neutrinos only observed as right-handed
- Since v's are only left-handed, they are assumed to be massless

Challenging the Standard Model

- Modern neutrino detectors show neutrinos have mass
	- Atmospheric and reactor neutrinos observed to oscillate flavor
	- Sudbury Neutrino Observatory (SNO) observations consistent with oscillating neutrinos; also show the total neutrino flux agrees with standard solar models
		- 1,000,000 kg D_2O Cherenkov detector buried 6,800 feet underground
	- Oscillations caused by differences between flavor and mass eigenstates

http://www.sno.phy.queensu.ca/

Physics of Neutrino Oscillations

Flavor eigenstates can be written as linear combination of mass eigenstates:

$$
|\nu_{\ell}\rangle\ =\ \sum_{i=1}^3\,U^*_{i\ell}\mid\nu_i\rangle
$$

Propagation of mass eigenstates written as

$$
\left|\nu_i(t)\right\rangle = e^{-i\left(\text{Et}-\vec{p}\cdot\vec{x}\right)}\left|\nu_i(0)\right\rangle
$$

Energy rewritten as

$$
E = \sqrt{\vec{p}^2 + m^2} \simeq \vec{p}^2 + \frac{m^2}{2p}
$$

So, if distance traveled is L, then

$$
\left|\nu_i(L)\right\rangle = e^{-i\left(\frac{m_i^2 L}{2E}\right)} \left|\nu_i(0)\right\rangle
$$

Which means mass eigenstates can cause constructive and destructive interference in flavor eigenstates, causing oscillation between flavor

types:

$$
\left|\nu_{\ell}(L)\right\rangle = \sum_{i=1}^{3} U_{i\ell}^{*} e^{-i\left(\frac{m_{i}^{2}L}{2E}\right)} \left|\nu_{i}(0)\right\rangle
$$

Double β**- Decay**

- For some nuclei, single β decay not allowed
	- – $-$ e.g. ⁷⁶Ge cannot decay to ⁷⁶As because ⁷⁶As has less binding energy
- Instead, double β decay (2ν $\beta\beta$) can occur:

$$
^{76}\text{Ge} = \Longrightarrow {}^{76}\text{Se} + 2\text{e}^{\text{-}} + 2\text{v}_{\text{e}}^*
$$

2νββ is rarest known radioactive decay---half-life of 10^{21} yr

• If neutrino is Majorana particle, neutrinoless double βdecay (0νββ) is possible:

The Neutrino as a Majorana Particle

- Majorana particles are their own anti-particle
- Many believe it is plausible that neutrino is Majorana
	- Explains current observations of massive neutrinos
- Experiments attempting to detect 0νββ are only feasible way of testing whether neutrino is Majorana or not
	- EXO (136Xe)
	- MOON (100Mo)
	- GERDA (76Ge)
	- COBRA (multiple sources)
	- CUORE (¹³⁰Te)
	- NEMO (multiple sources)
	- Majorana (76Ge)

Ambidextrous Neutrinos

- Since neutrinos have mass, there must be right-handed neutrinos and left-handed anti-neutrinos
	- There exists a frame where neutrino changes handedness
- Decay rate $0\nu\beta\beta$ related to neutrino mass
	- $-$ Estimated half-life $>10^{25}$ yr

Energy Spectrum of Double β **- Decay**

The Majorana Experiment

- Uses ultra-pure Ge (86% enriched 76Ge) as both source and detector
	- –Reduces materials required, reducing background noise
	- Ge detectors have good detection efficiency and good energy resolution
- In ${}^{76}Ge$, $0\nu\beta\beta$ (if it occurs) has half-life of \sim 10²⁵ yr
	- In region of interest (-2039 keV) , allowed background of ≤ 1 count in

Germanium: Semiconductor Detector

- Intermediate band gap size (0.67 eV)
	- Impurities added can change gap
	- $-$ Ge cooled with liquid N₂ to reduce thermal excitation
- Photons or charged particles ionize atoms
	- –Electrons excited into conduction band
	- Charge swept to nodes by reversed bias voltage, creating detectable signal

http://www.ieee.org/organizations/pubs/newsletters/leos/apr99/lasing1.gif

An Assay Chamber?

- Rough radioactivity measurement
	- Also of use for other experiments, like KATRIN
- Testing for Research and Development
	- Try new mounting techniques for crystal and cryostat
	- Test detector handling issues
	- –Provide confirmation of simulations
- One major problem:
	- Lots of heavy labor
- The Solution ...

Detector Setup

- • Germanium crystal 70.9 mm long, 65.1 mm diameter
- In aluminum casing, attached to liquid $N₂$ cryostat
- Bias Voltage: 3500 V
- Output feeds into delay, then into ADC (Analog to Digital Converter)
- Detector must be shielded from background events
	- –Active shielding to cancel cosmic rays (muons)
	- –Passive shielding to reduce background radiation

Active Shielding: Scintillation Detectors

- Scintillating material emits light when hit by ionizing particles (such as muons) or radiation
	- Organic (crystal, liquid, plastic)
	- $-$ Inorganic (e.g. NaI(Tl) and BF_2)
	- $-$ Gas (noble gases + N_2)
	- Glass
- •Connected to photomultiplier to create electrical signal

http://content.answers.com/main/content/wp/en/thu mb/c/cd/400px-Photomultipliertube.png

Cosmic Ray Veto:

Background Radiation in Majorana Lab

Background Radiation in Majorana Lab

Lead Attenuation

- Attenuation follows formula: $I = I_0e$ -µx
	- Measures photons that are *not scattered*
	- µ is mass attenuation coefficient
		- Varies with material and energy of photons
	- $-$ Here, I₀ = 1,000,000 photons

Pb House

- Built on 1 in. Al plate 10 in. off ground
	- – Room for large scintillator underneath
- 44 x 28 x 22 in.
	- Room for second detector
- $\bullet > 6$ in. on all sides
- 4 x 2 in. hole for cables and LN_2 lines
- Sources moved in and out through roof

Background Radiation Outside (Blue) and Inside (Red) Lead House

Quick Analysis

- Sensitivity:
	- 0.239 nCi for 1.17 MeV 60Co source (\sim 9 Becquerel)
- Resolution
	- about 1.0 keV at 1460.8 keV (^{40}K)
	- about 1.5 keV at 2614.5 keV $(208T1)$

Simulation of the Detector Setup Using Geant4

Motivation

• Test geometries to optimize setup Active Shielding Detector Orientation $\mathcal{L}_{\mathcal{A}}$ -Lead Attenuation • Compare to observations Calculate radioactivity of materials

What is Geant4?

- a toolkit for the simulation of the passage of particles through matter.
- areas of application
	- High energy physics
	- high energy, nuclear and accelerator physics
	- Medical science
- Uses C++
- Developed at CERN

• Monte Carlo Simulation

 \bullet Calculates the probability of all interactions at each step then chooses the interaction that limits the length of the step

Cosmic Muons

• Wrote class to simulate background from muons

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

• Cosine Squared Distribution • Adjustable for geometry

Cosmic Muon Coverage

• Tracked energy deposition in each volume • Of cosmic muon hits in thedetector, only 40% were vetoed

Detector Orientation Efficency

- \bullet • End to End or Side by Side
- Isotropic gamma source
- \bullet 1 and 2 MeV gammas
- \bullet • Source placement

Side to Side

End to End

 \bullet Placing the source on the face rather than the side gave a 10% greater efficiency in capturing 1 MeV gammas • Similar for 2 MeV

200

400

600

800

1000 **E** Deposited [keV]

Lead Attenuation

• Beam of gammas shot through 6 inches of lead at detectors

 $\mathbf{2}$

• Used the Energy spectrum to determine attenuation

Slightly lower than calculations

 \bullet

2000

Energy [keV]

1800

1600

1400

• Spectrum of gammas hitting inner wall

Cobalt 60 • Simulation of Cobalt 60 source inside the house agrees well with actual data.

 \bullet ⁶⁰Co \rightarrow ⁶⁰Ni + e⁻ + v_e $\bm{\ast}$ Creates 2 photons: 1.17 MeV and $\mathcal{L}_{\mathcal{A}}$ Co 60 Source

1.33 MeV

Observation (Red) and Simulation (Black)

Summary

- What we did
	- – Built radioactivity assay chamber with intrinsic germanium detector and active and passive shielding volumes
	- –Developed simulation of assay chamber using Geant4
- State of the System
	- – $-$ Observation agrees well with simulation for ${}^{60}Co$ source
	- – Radioactivity of materials can be calculated by comparing future measurements with simulations
- Improvements for the Future
	- –– Better scintillator coverage
	- –Copper shielding inside lead
	- – $-$ Pump N_2 through house
	- Second detector

Any Questions?

