Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006

Outline

- Neutrino Physics Background
- Double Beta Decay and the Majorana Question
- Assay Chamber
 - Detector
 - Shielding
 - Results
- Chamber Simulation
 - Geant4
 - Efficiencies
 - Comparison to Observation

Neutrino History

- Existence Postulated by Wolfgang Pauli in 1930
 - neutrino explained energy N and angular momentum conservation in β^{-} decay
- Electron Neutrino (v_e) first experimentally observed in 1956
- v_{μ} and v_{τ} experimentally observed in 1962 and 2000 respectively

Neutrinos in the Standard Model

- Weak interaction maximally violates parity
 - Neutrinos only observed as lefthanded
 - Anti-neutrinos
 only observed as
 right-handed
- Since v's are only left-handed, they are assumed to be massless

Challenging the Standard Model

- Modern neutrino detectors show neutrinos have mass
 - Atmospheric and reactor neutrinos observed to oscillate flavor
 - Sudbury Neutrino Observatory (SNO) observations consistent with oscillating neutrinos; also show the total neutrino flux agrees with standard solar models
 - 1,000,000 kg D₂O Cherenkov detector buried 6,800 feet underground
 - Oscillations caused by differences between flavor and mass eigenstates

http://www.sno.phy.queensu.ca/

Physics of Neutrino Oscillations

Flavor eigenstates can be written as linear combination of mass eigenstates:

$$|\nu_{\ell}\rangle = \sum_{i=1}^{3} U_{i\ell}^* |\nu_i\rangle$$

Propagation of mass eigenstates written as

$$|\nu_i(t)\rangle = e^{-i(\operatorname{Et}-p\cdot x)} |\nu_i(0)\rangle$$

Energy rewritten as

$$\mathbf{E} = \sqrt{\vec{p}^2 + m^2} \simeq \vec{p}^2 + \frac{m^2}{2p}$$

So, if distance traveled is L, then

$$|\nu_i(L)\rangle = e^{-i\left(\frac{m_i^2 L}{2E}\right)} |\nu_i(0)\rangle$$

Which means mass eigenstates can cause constructive and destructive interference in flavor eigenstates, causing oscillation between flavor

types:

$$|\nu_{\ell}(L)\rangle = \sum_{i=1}^{3} U_{i\ell}^{*} e^{-i\left(\frac{m_{i}^{2}L}{2E}\right)} |\nu_{i}(0)\rangle$$

Double β^- **Decay**

- For some nuclei, single β^2 decay not allowed
 - e.g. ⁷⁶Ge cannot decay to ⁷⁶As because ⁷⁶As has less binding energy
- Instead, double β ⁻ decay ($2\nu\beta\beta$) can occur:

$$^{76}\text{Ge} == > ^{76}\text{Se} + 2e^{-} + 2v_e^{*}$$

 $-2\nu\beta\beta$ is rarest known radioactive decay---half-life of 10^{21} yr

• If neutrino is Majorana particle, neutrinoless double β^- decay ($0\nu\beta\beta$) is possible:

The Neutrino as a Majorana Particle

- Majorana particles are their own anti-particle
- Many believe it is plausible that neutrino is Majorana – Explains current observations of massive neutrinos
- Experiments attempting to detect $0\nu\beta\beta$ are only feasible
 - way of testing whether neutrino is Majorana or not
 - EXO (¹³⁶Xe)
 - MOON (¹⁰⁰Mo)
 - GERDA (⁷⁶Ge)
 - COBRA (multiple sources)
 - CUORE (¹³⁰Te)
 - NEMO (multiple sources)
 - Majorana (⁷⁶Ge)

Ambidextrous Neutrinos

- Since neutrinos have mass, there must be right-handed neutrinos and left-handed anti-neutrinos
 - There exists a frame where neutrino changes handedness
- Decay rate $0\nu\beta\beta$ related to neutrino mass
 - Estimated half-life > 10^{25} yr

Energy Spectrum of Double β⁻ Decay

http://www.unizar.es/lfnae/grafs/2beta.gif

The Majorana Experiment

- Uses ultra-pure Ge (86% enriched ⁷⁶Ge) as both source and detector
 - Reduces materials required, reducing background noise
 - Ge detectors have good detection efficiency and good energy resolution
- In ⁷⁶Ge, 0νββ (if it occurs) has half-life of ~10²⁵ yr
 - In region of interest
 (~2039 keV), allowed
 background of < 1 count in

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Germanium: Semiconductor Detector

- Intermediate band gap size (0.67 eV)
 - Impurities added can change gap
 - Ge cooled with liquid N₂ to reduce thermal excitation
- Photons or charged particles ionize atoms
 - Electrons excited into conduction band
 - Charge swept to nodes by reversed bias voltage, creating detectable signal

http://www.ieee.org/organizations/pubs/newsletters/leos/apr99/lasing1.gif

An Assay Chamber?

- Rough radioactivity measurement
 - Also of use for other experiments, like KATRIN
- Testing for Research and Development
 - Try new mounting techniques for crystal and cryostat
 - Test detector handling issues
 - Provide confirmation of simulations
- One major problem:
 - Lots of heavy labor
- The Solution . . .

Detector Setup

- Germanium crystal 70.9 mm long, 65.1 mm diameter
- In aluminum casing, attached to liquid N₂ cryostat
- Bias Voltage: 3500 V
- Output feeds into delay, then into ADC (Analog to Digital Converter)
- Detector must be shielded from background events
 - Active shielding to cancel cosmic rays (muons)
 - Passive shielding to reduce background radiation

Active Shielding: Scintillation Detectors

- Scintillating material emits light when hit by ionizing particles (such as muons) or radiation
 - Organic (crystal, liquid, plastic)
 - Inorganic (e.g. NaI(Tl) and BF_2)
 - Gas (noble gases + N_2)
 - Glass
- Connected to photomultiplier to create electrical signal

http://content.answers.com/main/content/wp/en/thumb/c/cd/400px-Photomultipliertube.png

Cosmic Ray Veto:

Background Radiation in Majorana Lab

Background Radiation in Majorana Lab

Lead Attenuation

- Attenuation follows formula: $I = I_0 e^{-\mu x}$
 - Measures photons that are *not scattered*
 - $-\mu$ is mass attenuation coefficient
 - Varies with material and energy of photons
 - Here, $I_0 = 1,000,000$ photons

Pb House

- Built on 1 in. Al plate 10 in. off ground
 - Room for large scintillator underneath
- 44 x 28 x 22 in.
 - Room for second detector
- > 6 in. on all sides
- 4 x 2 in. hole for cables and LN₂ lines
- Sources moved in and out through roof

Background Radiation Outside (Blue) and Inside (Red) Lead House

Quick Analysis

- Sensitivity:
 - 0.239 nCi for
 1.17 MeV ⁶⁰Co
 source (~ 9
 Becquerel)
- Resolution
 - about 1.0 keV at 1460.8 keV (⁴⁰K)
 - about 1.5 keV at 2614.5 keV (²⁰⁸Tl)

Simulation of the Detector Setup Using Geant4

Motivation

 Test geometries to optimize setup -Active Shielding -Detector Orientation -Lead Attenuation Compare to observations -Calculate radioactivity of materials

What is Geant4?

- a toolkit for the simulation of the passage of particles through matter.
- areas of application
 - High energy physics
 - high energy, nuclear and accelerator physics
 - Medical science
- Uses C++
- Developed at CERN

Monte Carlo Simulation

 Calculates the probability of all interactions at each step then chooses the interaction that limits the length of the step

Cosmic Muons

 Wrote class to simulate background from muons

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Cosine Squared Distribution
 Adjustable for geometry

Cosmic Muon Coverage

 Tracked energy deposition in each volume • Of cosmic muon hits in the detector, only 40% were vetoed

Detector Orientation Efficency

- End to End or Side by Side
- Isotropic gamma source
- 1 and 2 MeV gammas
- Source placement

Side to Side

End to End

 Placing the source on the face rather than the side gave a 10% greater efficiency in capturing 1 MeV gammas Similar for 2 MeV

200

400

600

800

0 1000 E Deposited [keV]

Lead Attenuation

 Beam of gammas shot through 6 inches of lead at detectors

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

 Used the Energy spectrum to determine attenuation

Slightly lower than calculations

 Spectrum of gammas hitting inner wall

Cobalt 60 Simulation of Cobalt 60 source inside the house agrees well with actual data.

• ${}^{60}Co \rightarrow {}^{60}Ni + e^{-} + v_{e}^{*}$ - Creates 2 photons: 1.17 MeV and 1.33 MeV $[{}^{Co 60 Source}]$

Observation (Red) and Simulation (Black)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Summary

- What we did
 - Built radioactivity assay chamber with intrinsic germanium detector and active and passive shielding volumes
 - Developed simulation of assay chamber using Geant4
- State of the System
 - Observation agrees well with simulation for ⁶⁰Co source
 - Radioactivity of materials can be calculated by comparing future measurements with simulations
- Improvements for the Future
 - Better scintillator coverage
 - Copper shielding inside lead
 - Pump N₂ through house
 - Second detector

Any Questions?

