Relativistic Electron Scattering off Nucleons

Scott Bender

Advisor: Dr. Gerald Miller

Outline

- •Nonrelativistic scattering theory
- •Relativistic scattering off nucleons
- •The problem and our approach
- •Results

Electron Scattering

Classical concept Detector

Quantum concept

$$\Psi = \psi_{in} + \psi_{out} = Ae^{i\mathbf{k}_i \cdot \mathbf{r}} + A(\Omega) \frac{e^{ikr}}{r}$$

$$\mathbf{J}_{in}$$

$$\mathbf{J}_{in} = \frac{h\mathbf{k}}{mA^2} , \quad \mathbf{J}_{out} = \frac{h}{2miA^2} (\psi^* \nabla \psi - \psi \nabla \psi^*) \approx \frac{h\mathbf{k}}{A^2 mr^2} |f(\Omega)|^2$$

nucleon

The Differential Scattering Cross Section

$$J_{in} = \frac{hk}{mA^{2}} \qquad \qquad \psi_{scattered} = f(\Omega) \frac{e^{ikr}}{r}$$

$$dN = J_{in} \frac{d\sigma}{d\Omega} d\Omega$$

where $\frac{d\sigma}{d\Omega}$ is the differential cross section

With the current densities from earlier, the differential cross section can be shown to be

$$\frac{d\sigma}{d\Omega} = \left| f(\Omega) \right|^2$$

The (nonrelativistic) Form Factor

Let $|\Psi_i\rangle$ and $|\Psi_f\rangle$ denote the states of the initial and final states of the e-/nucleon system "before" and "after" interaction

$$\langle \mathbf{r}_{e}, \mathbf{r}_{p} | \Psi_{i} \rangle = e^{i\mathbf{k}_{i} \cdot \mathbf{r}_{e}} \psi_{i}(\mathbf{r}_{n})$$

$$\langle \mathbf{r}_{e}, \mathbf{r}_{p} | \Psi_{f} \rangle = e^{i\mathbf{k}_{f} \cdot \mathbf{r}_{e}} \psi_{f}(\mathbf{r}_{n})$$

$$\langle \mathbf{r}_{e}, \mathbf{r}_{p} | \Psi_{f} \rangle = e^{i\mathbf{k}_{f} \cdot \mathbf{r}_{e}} \psi_{f}(\mathbf{r}_{n})$$

Some math→

$$\langle \Psi_f | V^{\text{int}} | \Psi_i \rangle = \frac{2\pi h^2}{m} f(\Omega)$$

$$\frac{d\sigma_{i\to f}}{d\Omega} = \frac{m^2}{4\pi^2 \mathbf{h}^4} \left| \left\langle \Psi_f \left| V^{\text{int}} \right| \Psi_i \right\rangle \right|^2 = \frac{m^2}{4\pi^2 \mathbf{h}^4} \left| \underline{T} \right|^2_{i\to f}$$

For a Coulomb interaction,

assume elastic collision, so $\psi_{n,i} = \psi_{n,f}$

$$T_{i \to f} = \left\langle \Psi_f \left| \frac{e^2}{\left| \mathbf{r}_e - \mathbf{r}_n \right|} \right| \Psi_i \right\rangle = \int dv_e dv_n \psi_{n,f}^* \psi_{n,i} \frac{e^2}{\left| \mathbf{r}_e - \mathbf{r}_n \right|} e^{i\mathbf{q} \cdot \mathbf{r}_e}$$

$$= \int dv_s dv_{r_n} \rho(\mathbf{r}_n) e^{i\mathbf{q} \cdot \mathbf{s}} \frac{e^2}{|\mathbf{s}|} e^{i\mathbf{q} \cdot \mathbf{r}_n} = F(\mathbf{q}) \int dv_s e^{i\mathbf{q} \cdot \mathbf{s}} \frac{e^2}{|\mathbf{s}|}$$

BIG IDEA: $F(\mathbf{q}) = \int dv_{r_n} \rho(\mathbf{r}_n) e^{i\mathbf{q}\cdot\mathbf{r}_n}$ is the "form factor" \rightarrow

CAN BE MEASURED!

Now, we can obtain $\rho(\mathbf{r}_n)$ from the form factor by an inverse Fourier transform:

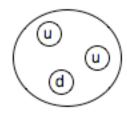
$$\rho(\mathbf{r}_n) = \int d^3q F(\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{r}_n}$$

More on the form factor...

For Rutherford scattering: $\rho(\mathbf{r}_n) \approx \delta^3(\mathbf{r}_n)$,

$$F(\mathbf{q}) = \int \delta^3(\mathbf{r}_n) e^{i\mathbf{q}\cdot\mathbf{r}_n} d\mathbf{r}_n = 1$$

But modern experiment is concerned with the actual structure of a nucleon, so we need to worry about $\rho(\mathbf{r}_n)$



Helpful version of the form factor in momentum space:

$$F(\mathbf{q}) = \int d\mathbf{r}_n d\mathbf{r}_n \psi^*(\mathbf{r}_n) \psi(\mathbf{r}_n') \delta^3(\mathbf{r}_n - \mathbf{r}_n') e^{i\mathbf{q}\cdot\mathbf{r}_n'}$$

$$= \int d\mathbf{p} \int d\mathbf{r}_n \psi^*(\mathbf{r}_n) e^{i(\mathbf{p}+\mathbf{q})\cdot\mathbf{r}_n} \int d\mathbf{r}_n \psi(\mathbf{r}'_n) e^{-i\mathbf{p}\cdot\mathbf{r}_n'} = \int d\mathbf{p} \psi^*(\mathbf{p}+\mathbf{q}) \psi(\mathbf{p})$$

Light Front Coordinates

$$\mathbf{X} = \left\langle x^0, x^1, x^2, x^3 \right\rangle$$

$$\mathbf{x} = \left\langle x^0, x^1, x^2, x^3 \right\rangle \qquad \mathbf{p} = \left\langle p^0, p^1, p^2, p^3_z \right\rangle$$

Dirac:

$$x^{\pm} \equiv x^0 \pm x^3$$

$$\mathbf{X}_{\perp} \equiv \left\langle x^1, x^2 \right\rangle$$

$$p^{\pm} \equiv p^0 \pm p^3$$

$$\mathbf{p}_{\perp} \equiv \left\langle p^{1}, p^{2} \right\rangle$$

when
$$x^+ = const.$$
,

when $x^+ = const.$, $\frac{dz}{dt} = -c$

Useful relationship:

$$m^{2} = p^{\lambda}p_{\lambda} = p^{0}p^{0} - p^{3}p^{3} - |\mathbf{p}_{\perp}|^{2} = p^{+}p^{-} - |\mathbf{p}_{\perp}|^{2}$$

$$p^{-} = \frac{\left|\mathbf{p}_{\perp}\right|^{2} + m^{2}}{p^{+}}$$

Relative Coordinates

Assume equal nucleon masses and work in CM frame:

$$m_1 = m_{2, \text{SO}} \qquad \mathbf{p}_1 = -\mathbf{p}_2 \equiv \mathbf{p}$$

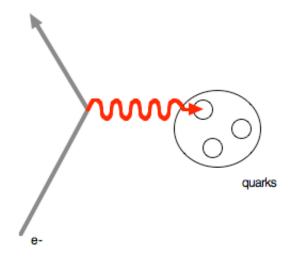
NONRELATIVISTIC:

$$\mathbf{p}_{\perp} = \frac{(\mathbf{p}_{\perp 1} - \mathbf{p}_{\perp 2})}{2}$$

RELATIVISTIC:

$$\mathbf{p}_{\perp} = (1 - x)\mathbf{p}_{\perp 1} - x\mathbf{p}_{\perp 2}$$
where $x = \frac{p_1^+}{P^+}$

Assume e- interacts with only one quark in the target nucleon-



$$\mathbf{p}_{1\perp} \rightarrow \mathbf{p}_{1\perp} + \mathbf{q}$$

NONRELATIVISTIC:
$$\Delta \mathbf{p}_{\perp} = \frac{\mathbf{q}}{2}$$

RELATIVISTIC:
$$\Delta \mathbf{p}_{\perp} = (1 + x)\mathbf{q}$$

The Relativistic Form Factor

NONRELATIVISTIC

$$F(q^2) = \int d\mathbf{p} \psi^* (\mathbf{p}_\perp + \frac{\mathbf{q}}{2}) \psi(\mathbf{p})$$

RELATIVISTIC (from QFT)

$$F(q^{2}) = \int \frac{dx d\mathbf{p}_{\perp}}{x(1-x)} \psi^{*}(\mathbf{p}_{\perp} + (1-x)\mathbf{q}, x) \psi(\mathbf{p}_{\perp}, x)$$

This can be put back into spatial form in the perpendicular direction:

$$\psi(\mathbf{p}_{\perp}, x) = \int d^{2}\mathbf{x}_{\perp}\psi(\mathbf{x}_{\perp}, x)e^{-i\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}}, \quad \psi(\mathbf{p}_{\perp} + (1 - x)\mathbf{q}_{\perp}, x) = \int d^{2}\mathbf{x}_{\perp}\psi(\mathbf{x}_{\perp}, x)e^{-i(\mathbf{p}_{\perp} + (1 - x)\mathbf{q}_{\perp}) \cdot \mathbf{x}_{\perp}}$$

$$F(q^{2}) = \int dxd^{2}\mathbf{x}_{\perp}\tilde{\rho}(x, \mathbf{x}_{\perp})e^{i(1 - x)\mathbf{q} \cdot \mathbf{x}}$$

$$= 2\pi \int dxdbb\tilde{\rho}(x, b)J_{0}(qb(1 - x)) \qquad (b = |\mathbf{x}_{\perp}|)$$

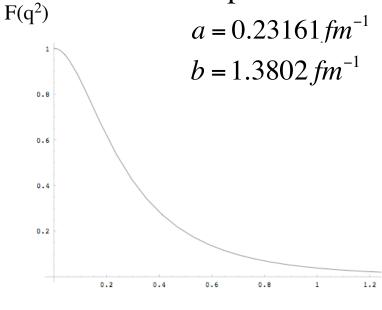
Example of a form factor- the Hulthen potential

Consider a radially symmetric Hulthen potential: $V(r) = \frac{b^2 - a^2}{1 - e^{(b-a)r}}$

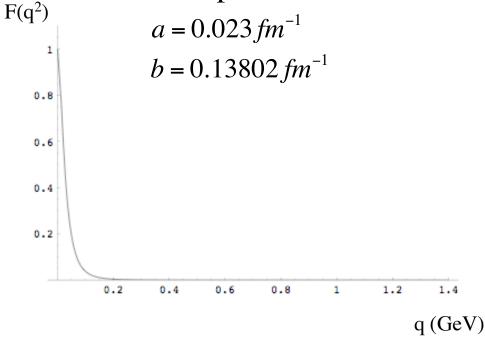
q (GeV)

Solution:
$$\psi(r) \propto \frac{e^{-ar} - e^{-br}}{r}$$

Deuteron parameters



Nucleon parameters



The Problem

How do we get $\tilde{\rho}(x,b)$ from $F(q^2)$?

Answer- this appears to be a Fredholm Integral Equation, which has been solved before

- 1.) Define $I(B) = \int \frac{qdq}{2\pi} J_0(qB) F(q^2)$
- 2.) Expand $\tilde{\rho}(x,b) = \sum_{n,m} a_{nm} H_m(b) L_n(x)$, so the goal now is to find a_{nm}

Then,
$$BI(B) = \sum_{n,m} \int_{B/2}^{\infty} db a_{nm} H_m(b) L_n (1 - \frac{B}{b}) = \sum_{n,m} a_{nm} h_{mn}(B)$$

- 3.) Expand $h_{mn}(B) = \sum_{p} d_{nmp} H_{p}(B)$,
- 4.) Find (via Mathematica) $\sum_{m,n} c_{qnm} d_{mnp} = \delta_{qp}$
- 5.) If $BI(B) = \sum_{n} f_n H_n(B)$, then it can be shown:

$$a_{nm} = \sum_{r} f_r c_{rnm}$$

SO WE'VE SOLVED IT, RIGHT?

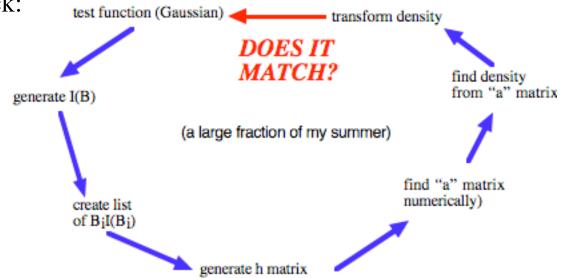
NOT QUITE.....

Not possible to find C_{qnm} numerically

NEW IDEA: take several values of B and, using $BI(B) = \sum_{n,m} a_{nm} h_{mn}(B)$ create a matrix

$$I(B) = -\int_{B^{2}}^{\infty} dt e^{-t} = e^{-B^{2}} \qquad \begin{pmatrix} B_{1}I(B_{1}) \\ \dots \\ B_{T}I(B_{T}) \end{pmatrix} = \begin{pmatrix} h_{00}(B_{1}) & h_{01}(B_{1}) & \dots & h_{NN}(B_{1}) \\ h_{00}(B_{2}) & \dots & \dots \\ h_{00}(B_{T}) & \dots & h_{NN}(B_{T}) \end{pmatrix} \begin{pmatrix} a_{00} \\ \dots \\ a_{NN} \end{pmatrix}$$

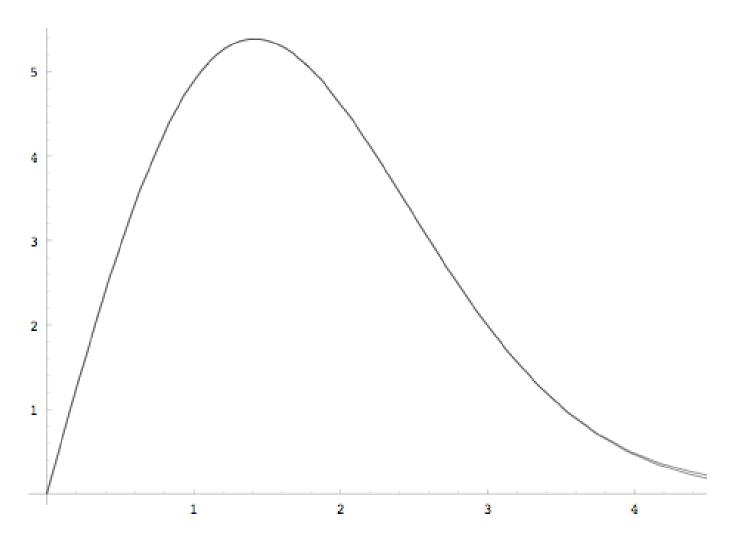
So we used a test function (a Gaussian) for the form factor to generate the nucleon density, then transformed it to see if we got the form factor back:



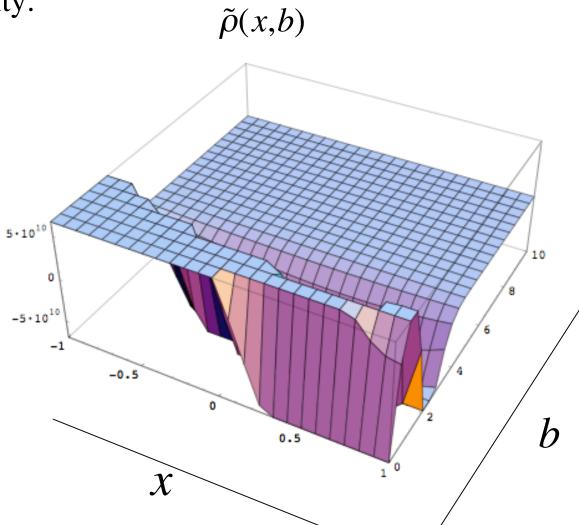
Results (sort of)

Approximating BI(B) with a matrix:

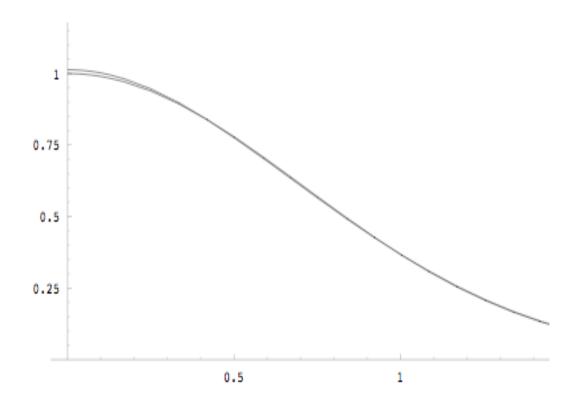
$$BI(B) \approx a_{00}h_{00}(B) + a_{10}h_{01}(B) + ... + a_{NN}h_{NN}(B)$$



The density:



Comparing the generated form factor with the original: (after having divided out a factor of $4\pi^2$)

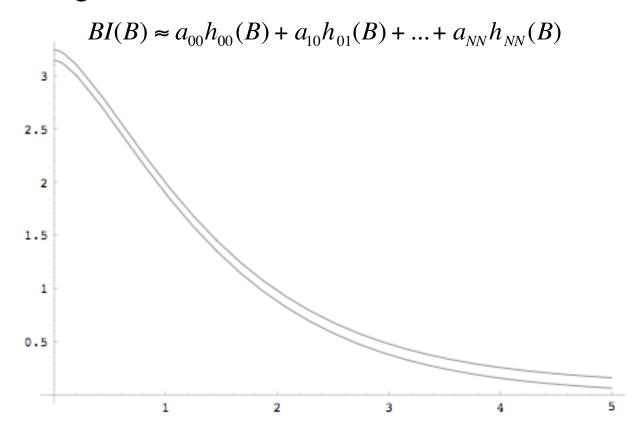


FORM FACTORS APPEAR TO MATCH

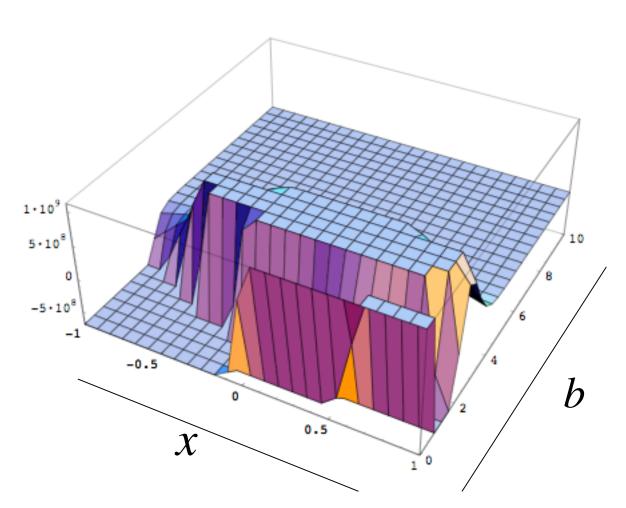
Using a different test form factor:

$$f(q^2) = \frac{1}{(1+q^2)^2} \rightarrow BI(B) = 2\pi BK_1(B)$$

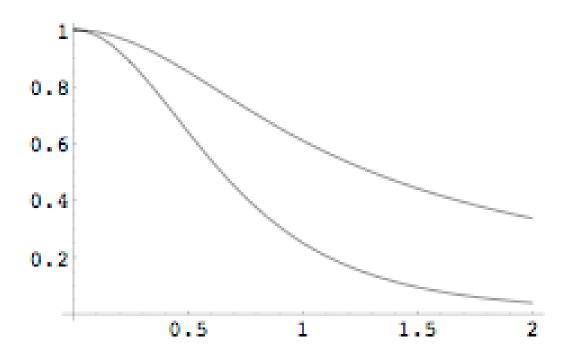
Approximating BI(B) with a matrix:



The density:



Comparing the generated form factor with the original: (after having divided out by a factor of about 26)



FORM FACTORS DO NOT MATCH

So when all else fails we do what logically comes next...

We guess the answer

Recall: we have a test form factor $F(q^2) = e^{-q^2}$, $I(B) = \int \frac{d^2q}{4\pi^2} e^{-iq \cdot B} f(q) = e^{-B^2}$,

and
$$I(B) = \int \frac{dx}{(1-x^2)^2} \tilde{\rho}(x, \frac{B}{1-x})$$

So guess: $\tilde{\rho}(x,b) = (1-x)4b^2e^{-\frac{4b^2}{2}}$,

$$I(B) = \int \frac{dx}{(1-x)^3} 4B^2 e^{-\frac{4B^2}{2(1-x)^2}} \longrightarrow t = \frac{4B^2}{(1-x)^2} \longrightarrow I(B) = -\int_{B^2}^{\infty} dt e^{-t} = e^{-B^2}$$

$$I(B) = -\int_{B^2}^{\infty} dt e^{-t} = \int_{B^2}^{\infty} dt (\frac{B^2}{2} e^{-t} + t e^{-t})$$

The form factor has multiple density solutions- can't be inverted!

Conclusion

The relativistic form factor CANNOT be inverted to find the density

Acknowledgments

- •Dr. Miller
- •The NSF and UW