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Our research this summer concerns the measurement of nucleon structure by
scattering electrons off a target nucleon.  At nonrelativistic electron energies (∼MeV),
information about the nucleon structure is easily attainable from the available data.
However, at higher energies (∼GeV- energies at which current experiments are carried
out), relativistic analysis is required, and the expressions are more complicated.  Our goal
has been to obtain an algorithm with which one can obtain information about the
nucleon’s structure from data taken at these energies.

Nonrelativistic scattering theory states that the number of electrons dN scattered
into a solid angle dΩ at a solid angle Ω from the incident beam of current density Jin is
given by the relation

(1)

where         is the differential cross section.  If the scattered electron wavefunction is

assumed to have the form

(2)

where r is the distance from the target nucleon, the form factor can be shown to be of the
form

                                                                               . (3)

If then ki and kf denote the initial and final momenta of the electron, and the initial and
final electron/nucleon states are given by

(4)

It can further be shown that

(7)

Now, eq. (3) reads:

(8)

       is called the ‘transition matrix,” and it represents the probability of the system ending
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up in the state given by the second line of eq. (4).  For an elastic collision, this can be
written (for a coulomb interaction) as the product of two integrals:

(9)
where F(q) is the Fourier transform of the nucleon charge density and is called the “form
factor” and q is the momentum kick given to the nucleon.  The form factor can be
measured, and to obtain the nucleon density one has only to perform an inverse Fourier
transform.

However, the relativistic expression is much more complicated. First, we
introduce a set of relativistic coordinates invented by Dirac in 1949, known as light from
coordinates.  They are defined by the relations

(10)

where p0 is E/c, p3 is pz, and          is in the x, y plane.  Now, we assume that the

nucleon consists of two quarks, so that we can treat the nucleon as a two-body problem.
The relative coordinates for two equal-mass quarks (particle 1 and 2) are then given
found quantum field theory [1] as

(11)

where
(12)

is the “plus momentum fraction.”  If the scattered electron imparts a momentum q to
quark 1 in the transverse plane, then the fully relativistic form factor is given by

(13)

This can be rewritten with the transverse momenta transformed to coordinate space, but
the integral over x remains [1]:

(14)

Now, a simple inverse Fourier transform will no longer yield the nucleon density, and a
more complicated algorithm is need to invert the equation.

At first glance, this appears to be a Fredholm integral equation, and the solution is
well known.   The solution is a five-step process:

1.)Define:
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2.) Expand                                                              where               and              are

orthonormal and complete so that             contains all the information about the density.
Now,

3.) Next, expand

4.) Find the matrix d such that

5.) Then, expanding                                      , it can be shown that

However, upon using a test function (a Gaussian) for F(q), it does not appear that there
exists a unique solution for the matrix d. Therefore, for the same test function, we took
several values of B and, using the relationship

(15)

we approximated the first elements of        .  To test this, we obtained the nucleon density
and the form factor from the test form factor with the algorithm to see if we would get the
test function back.  The density is shown below:

At first glance, there are a number of problems with this result.  First, it is astronomically
larger in places than one would expect.  Further, it is negative at other points.  However,
as our form factor is an arbitrary function, there is nothing mathematically that would
prohibit the density from being negative.  Indeed, when we insert the density into eq. (14)
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to obtain the form factor, we appear to get the correct result, save a mysterious factor of
4π:

Here, both the original form factor and the form factor carried through the algorithm are
pictured.  When carried through the algorithm, a second test form factor,
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yields a comparable density function:
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However, when we transform the density, we do not obtain the original form factor.
After renormalizing the resulting function to one at q=0, we obtain:

Clearly, they do not match. However, we were able to guess a density,

(17)

that, when transformed as in eq. (14) yields a Gaussian.  Inserting this into the expression
for I(B) from the first step of the algorithm, we have

       
. (18)

However, with the substitution

(19)

we have

                                  .                  (20)

However, integration by parts reveals the same integral can be written:

(21)

Therefore, the integral equation in eq. (14) does not have a unique kernel.  Some other
method must be devised to interpret data.

However, we may still calculate the form factor from the potential.  For example,
this has been done [2] for the ground state Klein-Gordon solution to the Hulthen
potential,

(22)
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yielding a form factor:

F(q2)

q (GeV)

for the parameters a=0.23161fm-1 and b=1.3802 fm-1. This can be interpreted as
the probability of an elastic collision where a momentum q is exchanged.
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