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Dark Matter Problem
• Dark matter makes up 

more than 85% of the 
mass in the universe, but 
only baryonic matter is 
observable

• Dark matter interacts 
primarily through gravity

• Dark matter forms 
spherical halos whose 
presence can be inferred 
only by its influence over 
the motions of stars and 
gas Image courtesy of NASA



Dark Matter Substructure

• Galaxies and galaxy 
clusters form within 
dark matter halos

• Simulations predict 
more satellite galaxies 
for the Milky Way 
than are observed by a 
factor of ~50

Moore et al (1999)



Smooth Particle Hydrodynamics

• The SPH code Gasoline does N-body 
simulations in three dimensions

• Gravity is implemented using a tree 
algorithm 

• Gas is modeled as a group of particles 
under the influence of hydrodynamic forces

• Gasoline also handles star formation



Supernova Feedback
• Stars form by the collapse 

of cold, dense gas clouds
• A supernova, the violent 

explosion of a star, is the 
fate of stars greater than 
eight times the mass of the 
Sun

• Inputting the energy from 
supernovae into the 
surrounding gas increases 
temperature and decreases 
density, decreasing the 
rate of star formation

Image courtesy of NASA



Mass Loss in Dwarf Galaxies

• Most galaxies in the universe are dwarf galaxies
• Studying mass ejection efficiency in these galaxies 

could help explain the “missing satellites” of the 
Milky Way

• Observational relations between kinematic 
properties and dark matter and baryonic mass 
fractions can be used to set up initial conditions 
for dwarf galaxies



Creating Initial Conditions

• We used galaxies of total mass 106 – 1011 solar 
masses

• The galactic disks were composed entirely of 
isothermal gas with T = 104 K, corresponding to a 
sound speed of ~10 km s-1

• Because dark matter interacts with baryons only 
through gravity, DM particles can be replaced by a 
static potential field using a profile developed by 
Navarro, Frenk, and White







Observational Implications
Stellar Mass vs. Circular Velocity
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Observable Stellar Mass

• Increased SN feedback 
results in decreased 
stellar mass

• For low feedback 
(E_SN ≤ 0.1), star 
formation falls off for 
Vc � 40 due to loss of 
spiral instability

Stellar Mass vs. Circular Velocity
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Mass Loss Efficiency
Ejection efficiency vs. Vc
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Mass Loss Efficiency

• The smallest galaxies 
are unstable even in 
the absence of SN 
feedback

• There is a sharp 
turning point where 
galaxies become stable

Ejection efficiency vs. Vc
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Dark Matter Substructure

• For vc/vglobal < 0.16, 
galaxies will lose more 
than 50% of their gas

• The “missing 
satellites” represent 
the halos that have lost 
too much baryonic 
matter to be 
observable
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