Simulations of Mass Loss in Isolated Dwarf Galaxies

Robert Marcus Tom Quinn Greg Stinson

Dark Matter Problem

- \bullet Dark matter makes up more than 85% of the mass in the universe, but *only baryonic matter is observable*
- Dark matter interacts primarily through gravity
- Dark matter forms spherical halos whose presence can be inferred only by its influence over the motions of stars and gas Image courtes gas

Dark Matter Substructure

- Galaxies and galaxy clusters form within dark matter halos
- Simulations predict more satellite galaxies for the Milky Way than are observed by a factor of ${\sim}50$

Moore et al (1999)

Smooth Particle Hydrodynamics Gasoline

- •• The SPH code Gasoline does N-body simulations in three dimensions
- \bullet • Gravity is implemented using a tree algorithm
- •• Gas is modeled as a group of particles under the influence of hydrodynamic forces
- •Gasoline also handles star formation

Supernova Feedback

- Stars form by the collapse of cold, dense gas clouds
- A supernova, the violent explosion of a star, is the fate of stars greater than eight times the mass of the Sun
- Inputting the energy from supernovae into the surrounding gas increases temperature and decreases density, decreasing the rate of star formation

Image courtes y of NASA

Mass Loss in Dwarf Galaxies

- Most galaxies in the universe are dwarf galaxies
- Studying mass ejection efficiency in these galaxies could help explain the "missing satellites" of the Milky Way
- Observational relations between kinematic properties and dark matter and baryonic mass fractions can be used to set up initial conditions for dwarf galaxies

Creating Initial Conditions

- We used galaxies of total mass $10^6 10^{11}$ solar masses
- The galactic disks were composed entirely of isothermal gas with $T = 10⁴ K$, corresponding to a sound speed of ~ 10 km s⁻¹
- Because dark matter interacts with baryons only through gravity, DM particles can be replaced by a static potential field using a profile developed by Navarro, Frenk, and White

Observational Implications

Stellar M a s s v s. Circ ular V elo city

Circ ular Velo city (km/s)

Observable Stellar Mass

- Increased SN feedback results in decreased stellar mass
- For low feedback $(E_SN \leq 0.1)$, star formation falls off for $Vc \Box 40$ due to loss of spiral instability

Stellar Mass vs. Circular Velocity

Mass Loss Efficiency

Ejectio n efficiency vs. V c

Mass Loss Efficiency

- The smallest galaxies are unstable even in the absence of SN feedback
- There is a sharp turning point where galaxies become stable

Ejectio n efficiency vs. V c

Dark Matter Substructure

- For v $_{\rm c}/{\rm v}_{\rm global}$ < 0.16, galaxies will lose more than 50% of their gas
- The "missing satellites" represent the halos that have lost too much baryonic matter to be observable

