Simulations of Mass Loss in Isolated Dwarf Galaxies

Robert Marcus Tom Quinn Greg Stinson

Dark Matter Problem

- Dark matter makes up more than 85% of the mass in the universe, but only baryonic matter is observable
- Dark matter interacts primarily through gravity
- Dark matter forms spherical halos whose presence can be inferred only by its influence over the motions of stars and gas

Dark Matter Substructure

- Galaxies and galaxy clusters form within dark matter halos
- Simulations predict more satellite galaxies for the Milky Way than are observed by a factor of ~50

Moore et al (1999)

Smooth Particle Hydrodynamics Gasoline

- The SPH code Gasoline does N-body simulations in three dimensions
- Gravity is implemented using a tree algorithm
- Gas is modeled as a group of particles under the influence of hydrodynamic forces
- Gasoline also handles star formation

Supernova Feedback

- Stars form by the collapse of cold, dense gas clouds
- A supernova, the violent explosion of a star, is the fate of stars greater than eight times the mass of the Sun
- Inputting the energy from supernovae into the surrounding gas increases temperature and decreases density, decreasing the rate of star formation

Image courtesy of NASA

Mass Loss in Dwarf Galaxies

- Most galaxies in the universe are dwarf galaxies
- Studying mass ejection efficiency in these galaxies could help explain the "missing satellites" of the Milky Way
- Observational relations between kinematic properties and dark matter and baryonic mass fractions can be used to set up initial conditions for dwarf galaxies

Creating Initial Conditions

- We used galaxies of total mass 10⁶ 10¹¹ solar masses
- The galactic disks were composed entirely of isothermal gas with T = 10^4 K, corresponding to a sound speed of ~10 km s⁻¹
- Because dark matter interacts with baryons only through gravity, DM particles can be replaced by a static potential field using a profile developed by Navarro, Frenk, and White

Observational Implications

Stellar Mass vs. Circular Velocity

Circular Velocity (km/s)

Observable Stellar Mass

- Increased SN feedback results in decreased stellar mass
- For low feedback

 (E_SN ≤ 0.1), star
 formation falls off for
 Vc □ 40 due to loss of
 spiral instability

Stellar Mass vs. Circular Velocity

Mass Loss Efficiency

Ejection efficiency vs. Vc

Mass Loss Efficiency

- The smallest galaxies are unstable even in the absence of SN feedback
- There is a sharp turning point where galaxies become stable

Ejection efficiency vs. Vc

Dark Matter Substructure

- For $v_c/v_{global} < 0.16$, galaxies will lose more than 50% of their gas
- The "missing satellites" represent the halos that have lost too much baryonic matter to be observable

