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We present an approach for obtaining optical spectra using a real time 
calculation which employs a code that is based on Siesta. Simulation results for benzene 
and C60 are compared with experiment. Further, two versions of the code, which use 
different methods of time evolution of the wave function, are compared in efficiency. 
 
Theory 

The optical properties of a 
molecule are obtained from its response 
to a perturbing electric field. In our case, 
the electric field is chosen to be a step 
function 
E(t) = E0 1−θ(t)( )                             (1.) 
where θ(t) is the unit step function. The 
perturbing field displaces the electrons 
of the molecule, which gives rise to a 
time varying electric dipole by means of 
which optical properties can be obtained. 

For t<0, the molecule is put in a 
constant electric field and the system is 
solved for the ground state. At t=0, the 
perturbing field is switched off and 
Schrödinger’s equation 

 
  
ih ∂

∂t
Ψ = HΨ                                     (2.) 

is used to propagate the one-electron 
wave functions Ψ. (Atomic units 
  h = m = e =1 will be used for the 
remainder of this report.) The 
Hamiltonian in (2) is given by1 

H=
1
2

∇2 +Vext(r,t)+
ρ(r',t)
r−r'∫ dr+Vxc ρ[ ](r,t) 

Because core electron transitions 
occur only at essentially frozen optical 
frequencies, only the valence electron 
wave functions are propagated. The 
effect of the core electrons is 
incorporated as pseudopotentials in the 

external potential Vext. Apart from the 
contributions due to core electrons, the 
external potential Vext is also composed 
of the energy due to the applied electric 
field and the potential due to the nuclei. 
It is of importance to note that the 
variation in internuclear distances, which 
occurs due to thermal fluctuations, has 
been ignored. This variation, which is 
usually incorporated using Debye-
Waller factors, causes broadening of the 
optical spectrum. 
  The last term on the right of (3.) 
is the exchange correlation potential Vxc 
that arises from the fact that Ψ is a 
single-electron rather than a full-
electron, wave function. Physically, the 
effect of Vxc can be interpreted as an 
electron-electron repulsion due to the 
Pauli exclusion principle. The 
calculation of Vxc is done using the local 
density approximation, which assumes 
that Vxc is a function of the local density 
at time t only.  

Time evolution of Ψ is done in a 
basis consisting of Gaussian functions 
that are used to model atomic orbitals. In 
this basis, the Ψ is propagated according 
to the unitary time evolution operator 

c(t +∆t)=e
−i S−1H(t')d

t

t+∆t

∫ t'

c(t) ≈e−iS−1H∆tc(t)       (4.) 

(3.) 
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where the overlap matrix S arises from 
the fact that the Gaussian orbitals are in 
general not orthogonal. 1  

An exact evaluation of the right 
hand side of equation (4.) would require 
diagonalization of the exponent. For C60, 
one of the molecules studied, each 
carbon atom has 13 Gaussian orbitals in 
the primitive basis, adding up to a total 
of 780 basis orbitals. Because the 
diagonalization of a 780x780 matrix is 
time inefficient, the exponential in (4.) is 
approximated with the Crank-Nicholson 
operator1 

c(t +∆t) ≈
1− iS−1H∆t /2
1+ iS−1H∆t /2

c(t)+ O(∆t2).  (5.) 
This formalism has the advantage that 
the unitary property of the time 
evolution operator is retained, which 
guaranties that the wave functions 
remain normalized. 

At every time step, the electric 
dipole D(t) is calculated from the wave 
functions c(t). The linear polarizability 
α(ω) can be computed from the ratio of 
the electric dipole and electric fields in 
frequency space, i.e. 
α(ω) = D(ω) / E(ω)                      
 where D(ω) and E(ω) are the Fourier 
transforms of D(t) and E(t), respectively. 
It should be noted that the polarizability  
is in general a 3x3 matrix. However, 
since molecules in fluids and gases 
molecules are oriented in random 
directions, only rotationally invariant 
quantities are physically interesting. We 
therefore construct the (rotationally 
invariant) average linear polarizability  

α(ω) =
1
3

Tr αij(ω){ }                            (7.) 

In order to compute the trace of α(ω), 
three simulations with electric fields 
along different axes have to be carried 
out. 

Using the field in (1.), we obtain 
from the expression for α(ω) in (6)1  

α(ω) = D0 /E0 + iωDt>0(ω)/E0 for ω>0   (8.) 
where D0  is the at time zero. Dt>0(ω) is 
the Fourier transform of the dipole 
moment for times [0,T], where T is the 
total simulated time. In order to avoid 
end ripples in Dt>0(ω), D(t) is multiplied 
by a polynomial windowing function 
before taking the Fourier transform. 
Apart from getting rid of the end ripples, 
the windowing function also has the 
effect of broadening the frequency 
spectrum. Physically, this may be 
regarded a means of incorporating the 
broadening arising from Debye-Waller 
factors. Additional broadening may be 
incorporated by an exponential damping 
factor δ. The Fourier transform of D(t) 
then becomes 

Dt>0(ω) = eiωt−δt 1− 3 t 2

T 2 + 2 t 3

T 3

 

 
 

 

 
 D(t)dω

0

T

∫
 

Apart from the electric dipole, 
quadrupole and higher order moments, 
which arise from the spatial dependence 
of the electric field, also contribute to the 
polarizability. However, these 
corrections are negligible. This can be 
seen from Fermi’s golden rule, by which 
the absorption is given by 

2
| |initial finalp Aµ ∝ Ψ ⋅ Ψ               (10.)               

where 0
ik rA A e ⋅=
r r

is the vector potential, 
and Ψinitial  and Ψfinal  are the molecular 
wave functions of the valence electrons 
before and after a photon is absorbed. 
Since r is of the order of the size of an 
atom, 1k r⋅ <<

r r  in the optical spectrum. 
Therefore, the exponential   ei

r 
k ⋅

r 
r  may be 

approximated to be unity. In this limit, 
the operator p A⋅  in (9) becomes a 
simple dipole operator. Thus in the limit 
where spatial variations in the perturbing 
field are negligible, only the dipole term 
needs to be considered. 

(9.) 

(6.) 
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Besides the linear polarizability 

α(ω), the dipole strength function S(ω) 
is also of particular interest. The two 
quantities are related by  

α(ω) = P S(ω')dω'
ω'2 −ω 2

0

∞

∫                         (11.) 

Performing a contour integration over 
the upper half plain, we obtain 

S(ω) =
2
π

Imα(ω) .                            (12.) 

The importance of the oscillator strength 
is that it is proportional to the absorption 
crossection, which is measured by most 
experiments. Further, S(ω) provides an 
internal consistency test. The integral of 
S(ω) over all frequencies should yield 
the number of electrons Ne present in the 
molecule, that is  

Ne = S(ω
0

∞

∫ )dω                                 (13.) 

In addition, the integral of α(ω) 
provides another test for consistency. 
Performing a contour integration and 
assuming that α(ω) is analytic, it is 
easily verified that 

α(0) =
2
π

α(ω
0

∞

∫ )dω                          (14.) 

Hence, the above equation may be 
regarded as an analyticity test of the 
polarizability. 
 
 
 
Simulation Results 
A. Benzene 

In order to test the accuracy of 
our model, we have carried out 
simulations on benzene. Here, 1000 time 
steps of size ∆t=.2/Hartree were used 
when the electric field was in the plane 
of the molecule. However, when the 
field was oriented perpendicular to the 
molecule, a smaller time step of 
∆t=.02/Hartree was needed to achieve 

convergence. A possible explanation is 
that the absorption peaks resulting from 
a field perpendicular to the molecule 
were at higher frequency and thus 
needed a better time resolution.  
 The primitive basis set used 
consists of two 1s and one 2p Gaussian 
orbitals for each hydrogen atom and a 
total of 13 orbitals for carbon (two s-, six 
p-, and five d-orbitals). In figure 1, the 
electric dipole is plotted as a function of 
time. Figure 2 compares the calculated 
oscillator strength (black) with 
experimental results for the absorption 
crossection (red2 and blue3). The scaling 
has been chosen so that the magnitude of 
the absorption peak at ~7eV matches 
with that of the experiments. Further, an 
exponential damping factor of  δ=.02 
Hartree was incorporated in order to 
achieve the same the width of the 7eV 
absorption peak as in the experiments. 

 

  
                                                                
 

Fig. 1.: Electric Dipole versus time step for 
benzene

Fig. 2.: Oscillator strength versus energy 
for benzene: our simulation (black), 
experiment (red2 and blue3) 
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Comparison with the 
experimental results gives reasonably 
good agreement for the low energy 
spectrum. However, as the energy is 
increased, the agreement diminishes. A 
possible reason for the discrepancy 
between experiment and our calculations 
can be found in the incompleteness of 
the basis set used. At higher energies, 
the electrons tend to occupy states that 
are not well represented in the basis set 
used. 

The simulation results are further 
compared with experiment4 in figure 3. 
Figure 4 plots our simulation results 
(grey), calculations by Walker et al5 
(black and purple) and further 
experimental results6 (light blue). Again, 
the calculated results are in approximate 
agreement with experiments and with 
other computational results. 

 
 
 

 
 

 
 
 
The integrated number of valence 

electrons in Benzene is 29.5, compared 
to the actual number of 30. Thus the sum 
rule is satisfied. The integral test for the 
static polarizability also gives good 
results. The integrated static 
polarizability and the polarizability at 
zero frequency are both equal to 9.26A3.  
 
 
B. C60 

A similar simulation is done on 
C60. The basis set used for carbon is the 
same at that for Benzene. The step size 
and the total simulated time are 
0.1/Hartree and 200/Hartree, 
respectively. The calculated absorption 
spectrum is shown in figure 5. As for 
benzene, the self-consistency tests are 
highly accurate. The sum rule yields 
245.7 out of 240 valence electrons and 
the left- and right-hand side of equation 
(14) give 76.1A3 and 76.2A3, 
respectively. The results for the static 
polarizability are further in approximate 
agreement with the experimental results 
of 88.2 A3 by Meth et al.,7 and 79.3 A3 
from uv absorption8. 
 

Fig. 3.: Calculated imaginary part of the 
polarizability (black) and experimental 
results for absorption (red3) for benzene 

Fig. 4.: Comparison of the absorption spectrum 
obtained by Walker et al4 (black and blue), 
experiment5 (light blue), and our simulation 
results (light grey) on benzene 
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Comparison of two Methods 
 

In order to increase the efficiency 
of the code, an alternative approach to 
approximating the time propagation 
operator in equation (4) was developed. 
In particular, the Crank-Nicholson 
operator in (5) is replaced by a “leapfrog 
method” of iteration 
c(t + ∆t) ≈ c(t − ∆t) − 2iS−1H∆tc(t) + O(∆t 2). (13) 

The new method has the 
advantage that it involves fewer matrix 
operations and does not involve matrix 
inversion. After examining computation 
times for C60, it was found that both 
codes used an inefficient routine called 
“matmul” for the matrix multiplication 
of S-1 and H. After “matmul” was 
replaced by a more efficient routine 
called “zgemm”, the respective 
computation times for the Crank-
Nicholson and leapfrog codes on single 
Pentium4 processor were found to be 
26.9s and 23.2s. The reason why the 
leapfrog method is not that much faster 
is that most of the computation time is 
not spent evolving the wave function, 
but is instead used for calculating the 
Hamiltonian. 
 

Further, the maximal time step 
for C60 was compared for both codes. It 
was found that for the Crank-Nicholson 
code, a step size of 0.4/Hartree was 
sufficient, while the leapfrog method 
required a step size of 0.08/Hartree (see 
figures 6 and 7). Hence, the Crank-
Nicholson code is overall by a factor of 
about four faster than leapfrog. 
 

 
 
 

 
 
 
 
 
Conclusions 

For the molecules studied, the 
Crank-Nicholson time evolution is more 
efficient that than “leapfrog method”. It 

Fig. 5.: Our simulation results for the imaginary part of 
the polarizability versus energy for C60, δ=0 

Fig. 6.: Our simulation results for the imaginary part of 
the polarizability for C60 using the “Crank-Nicholson 
method” for various time steps: 0.2/Hartree (black), 
0.4/Hartree (red), 0.6/Hartree (green), 0.8/Hartree 
(purple) 

Fig. 7.: Our simulation results for the imaginary part of 
the polarizability for C60 using the “leapfrog method” 
for various time steps: 0.05/Hartree (black), 
0.08/Hartree (red), 0.1/Hartree (green) 
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appears that it is the unitary property of 
the Crank-Nicholson operator allows for 
a larger choice of the step size. The 
larger time step more than compensates 
slightly longer CPU time per iteration of 
the Crank-Nicholson method. 

Further research can be done on 
the calculation of nonlinear 
susceptibilities. The main obstacle is to 
achieve convergence of the codes for 
strong electric fields. 

Moreover, computations times 
could be greatly reduced if the code 
were run on parallel. The increased 
speed of the code would then allow to 
compute optical spectra of large atomic 
clusters. 
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