The ³²S (p, γ) Resonance: A Measurement of Level Widths and Excitation Energies

Meghan Mella

Dept. of Physics, University of Northern Colorado University of Washington - REU 2005

Finding New Physics in ³²Ar Decay

The e-v correlation depends strongly on the nature of the carrier (we take a $0^+ \rightarrow 0^+$ transition). spins have to couple to zero **New Physics?** Standard Model spins Scalar Currents Vector Currents momenta

A trick to avoid detecting the neutrino

But width from p+³²S seems much larger!

Gamma ray energy curve in thick target shows level of interest to be wide.

Width of Resonance Measured by M. M. Aleonard et. al, Nucl. Phys. **A257**, 490 (1976)

•				
$E_{\rm p}$ (keV)		E, *) (keV)	Г°) (keV)	
notre travail	réf. ')		notre travail	notre travail
$\begin{array}{c} 421.8 \pm 0.6^{\text{b}}) \\ 579.8 \pm 0.6 \\ 587.9 \pm 0.5 \end{array}$ $\begin{array}{c} 720.7 \pm 0.6^{\text{b}}\} \\ 1587.8 \pm 1.1 \\ 1748.4 \pm 1.0 \\ 1757.2 \pm 0.9^{\text{b}}\} \\ 1879.7 \pm 1.1 \\ 1893.8 \pm 1.1 \\ 1893.8 \pm 1.1 \\ 1898. \pm 2 \\ 2229.4 \pm 1.3 \\ 2255.4 \pm 1.3 \\ 2254.2 \pm 1.5 \end{array}$	$579.9 \pm 0.5 \\ 587.4 \pm 0.5$ 1754.6 ± 0.7 $1900 \pm 2 \\ 2227 \pm 2 \\ 2257 \pm 2 \\ 2547 \pm 2 \\$	$2865.5 \pm 0.4^{b}).$ 2838.7 ± 0.8 2846.6 ± 0.7 $2975.4 \pm 0.3^{b}).$ 3816.2 ± 1.2 3971.5 ± 1.1 3980.4 ± 1.0 4099.2 ± 1.2 4112.9 ± 1.2 4117 ± 2 4438.3 ± 1.4 4463.6 ± 1.8 4746.5 ± 1.5	5±3 14±4 2±1	$\begin{array}{c} (9 \pm 4) \times 10^{-51}) \\ 0.08 \pm 0.01^{i}) \\ 0.21 \pm 0.03^{i}) \\ (1.4 \pm 0.6) \times 10^{-41}) \\ 0.053 \pm 0.007 \\ 0.09 \pm 0.02 \\ 0.38 \pm 0.04^{i}) \\ \overline{0.019 \pm 0.008} \\ 0.07 \pm 0.02 \\ 0.19 \pm 0.07 \\ 0.30 \pm 0.04 \\ 0.14 \pm 0.02 \\ 1.4 \pm 0.2 \\ 0.2 \pm 1.02 \times 10^{-21}) \end{array}$

TABLEAU I

Comparaison des énergies et des forces des résonances observées dans la réaction ³²S(p, y)³³Cl

Determining the Width of the Energy Peak

Purpose:

Confirm that the energy level in ³³Cl used for calibration from ³³Ar decay and the state populated via ³²S+ p are the same.

Method:

³²S + *p* excitation function

Summary of my projects

- Target preparation
- Accelerator training
- Checking energy resolution of Ge detectors
- Making some hardware
- Running the experiment
- Monte Carlo calculations

Making the Sulfur Targets

- Under vacuum, evaporate Ag₂S on thin Carbon foils
 - Test target with beam
 - Carbon caused background

- Use new method to make Ag₂S target without evaporator.
 - Test target thickness by impinging protons

The Experiment

Monte Carlo Calculations to Show Gammas Incident on a Ge Detector

More Precise Calculations

Monte Carlo with energy loss through the target

Preliminary Data & Excitation Function

Channel number

Resonance of Interest : New Target works!

Acknowledgements

 Thanks to my advisor, Alejandro Garcia, and also Smarajit Triambak for all of their help this summer and for being the coolest guys at CENPA.

