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ABSTRACT 
We investigate the hypothesis that the macroscopic properties of a porous material can be 
determined from limited morphological information.  Specifically, we investigate this 
hypothesis for the Minkowski functionals of two-phase media in 2-D.  We look at two 
methods for generating samples with desired Minkowski functionals: the Gibbs sampler 
and the Metropolis-Hastings algorithm.  The Metropolis-Hastings algorithm allows for 
the production of samples with any possible Minkowski functionals. Macroscopic 
properties of these samples will be measured in a future project. 
 
I. INTRODUCTION 
 

Any solid phase possessing pore space falls into the category of porous media.  

Porous media encompass many common substances including foam, soil, bones, and 

concrete.  Since these substances, among other porous media, are intimately connected 

with our lives, there exists motivation to understand the underlying physics of these 

substances.  Investigating porous media is nothing new; yet, there are open questions in 

the field. 

It has been hypothesized that the macroscopic properties of a material can be 

determined from limited morphological information about that material1.  However, 

morphological information is not necessarily unique to every structure.  Indeed, two 

different structures can give rise to the same morphological values, which means, if the 

hypothesis is correct, that fundamentally different structures can result in the same 

macroscopic properties.    

In order to evaluate the validity of the aforementioned hypothesis, we investigate 

a sufficient spread of values for a particular morphological property, namely the 

Minkowski functionals.  Additionally, we consider an adequate number of samples, each 



with unique structure, that satisfy the investigated morphological values.  Our samples 

are simulated as 2-D lattices of 1’s and 0’s, which represent phase one and phase zero, 

respectively.  We require closed samples, which means that the boundaries of the samples 

wrap around. 

Markov Chain Monte Carlo simulations provide a clear and relatively simple 

means for generating samples with desired morphological properties.  In particular, there 

are two types of simulations that fit the needs of this task: Gibbs sampling and the 

Metropolis-Hastings algorithm.  The Metropolis-Hastings algorithm proves better suited 

for the production of samples in this regard, because complications with the Gibbs 

sampler prevent the production of substances with a large enough span of morphological 

properties. 

The macroscopic properties of these substances will soon be tested.  It is our 

expectation that the results of those calculations will determine whether or not the 

macroscopic properties of a substance can indeed be determined from limited 

morphological information. 

 

II. MORPHOLOGICAL INFORMATION 

 Morphological information pertains to the physical shape, form, or structure of a 

substance.  Some examples of morphological information include the number of clumps 

of a particular phase, the relative area of phases and the boundary length between phases.  

There are a variety of measurements used to obtain morphological properties of a 

substance, including:  the two-point autocorrelation function, the lineal-path function2, 



the chord-length distribution function3 and the Minkowski functionals.  We choose the 

Minkowski functionals for our investigation.  

 In 2-D, the Minkowski functionals for a two-phase substance describe the area 

and the Euler characteristic of a particular phase, as well as the boundary length between 

the two phases.  For this study, the Minkowski functionals are measured with respect to 

phase one.  Thus, the area functional, 0,v  is the number of lattice points that are in phase 

one; the boundary length, 1,v  is the total length of boundary needed to isolate the two 

phases; and the Euler characteristic, 2 ,v  is the net number of “blobs” of phase one.  For a 

given substance, a blob of phase one inside phase zero adds one to the net Euler 

characteristic.  Conversely, a blob of phase zero inside phase one subtracts one from the 

net Euler characteristic.   

Additionally, we are interested in the values of the Minkowski functionals per 

lattice point because these values are independent of the dimensions of a substance.  To 

attain the normalized Minkowski functionals, we divide the total functionals by the 

number of points in the lattice. 

  Clearly, calculating Minkowski functionals for a sample of small dimensions is 

straightforward and can be done by visual inspection, but that method is not practical for 

samples with a large number of lattice points.  The necessity for large scale computations 

requires the introduction of an iterative process for calculating the functionals.  For this 

purpose, we define a process that iterates through each two-by-two square in the lattice 

and updates the total Minkowski functionals at each of those structures.  Figure 1 shows 

the possible structures, as well as their contributions to the total Minkowski functionals, 

where black squares represent phase one and white squares represent phase zero.  Note 



that Figure 1 only shows unique structures, and rotations of those structures produce the 

same contributions to the total Minkowski functionals. 

 The iterative method for calculating the contributions to the total Minkowski 

functionals at each two-by-two square has the inherent problem of over-counting both 

lattice points and internal boundaries.  Each lattice point is counted four times and each 

internal boundary is counted two times.  Thus, to alleviate the problem of over-counting, 

it is necessary to divide both the total area and Euler characteristic by four and the 

boundary length by two.  Now, with the correct total functionals, dividing by the total 

number of lattice points will yield the normalized Minkowski functionals.  Now that we 

are able to calculate the normalized Minkowski functionals for a sample, we need to 

produce many samples with the desired values for the functionals. 

  

III. RECONSTRUCTION 

 It is not possible to directly produce samples that satisfy specified values for the 

Minkowski functionals, so it is necessary to implement an indirect method for generation.  

Markov Chain Monte Carlo methods are widely used throughout computational physics 

to indirectly generate samples from a distribution when direct generation from the 

distribution is either costly or impossible.  We attempt two different Markov Chain 

Monte Carlo simulations, namely the Gibbs Sampler and the Metropolis-Hastings 

algorithm.  Both of these methods are commonly used in physical simulations, but each 

has its own advantages and disadvantages. 

  

A. GIBBS SAMPLER 



 Generally, Gibbs sampling solves the problem of producing a sample from a 

distribution function when direct generation from the distribution is not practical, but 

when generations from the conditional distributions are easy.  The production of a sample 

from the desired distribution rests on successive generations from the conditional 

distributions.  Some advantages of the Gibbs sampler are that it is easy to implement 

numerically and that convergence to the target distribution is guaranteed as long as the 

conditional distributions are correctly defined.  Unfortunately, the conditional 

distributions are not always trivial, or even possible to figure out.  Without the 

conditional distributions, the Gibbs sampler is of no value. 

 Specifically, we want to sample from all possible structures consistent with a set 

of Minkowski functionals.  The Minkowski functionals are not the components of a 

probability distribution; so, we consider the respective densities of the possible two-by-

two squares (Figure 1).  There are a total of six unique structures, which we designate as 

0 5,..., .S S   The distribution of interest is ( ),Sπ
r

where 0 5( ,..., ).S S S=
r

  However, we do not 

know how to directly sample from this distribution.  On the other hand, we may be able 

to sample from the full conditional probability distributions, ( ) ( | ),i i i iS S Sπ π −=
r

 

0,...,5.i =   If this is the case, then we set the initial values for S
r

 and begin the Gibbs 

sampling.  The initial values for S
r

 are set by generating a random lattice of 1’s and 0’s 

and calculating each .iS   

 In order to define the conditional distributions we assume that the individual two-

by-two squares in the lattice are independent of one another.  Subsequently, we look at a 

lattice point in the thr  row and thc  column of our lattice, , ,r cp  and calculate the 



probability that the point is in phase one.  This probability is based on the conditional 

probabilities and 1, , 1 1, 1,  ,  .r c r c r cp p p+ + + +   However, knowing 1, , 1 1, 1,  ,  and r c r c r cp p p+ + + +  

narrows down the dependence of the probabilities to just two iS  values.  Assuming the 

two-by-two square created by ,r cp  being in phase one has a probability of jS  and that the 

square created by ,r cp  being in phase zero has a probability of ,kS  then  

 ,Pr( 1 | , ) ,j
r c j k

j k

s
p S S

s s
= =

+
 (1) 

where js  is defined as jS  divided by the total number of rotational degeneracies of the 

thj structure.  Then, a random number on the interval (0,1) is generated and compared to 

the probability from Equation (1).  If the random number is less than the probability from 

Equation (1) then we set , 1.r cp =   Otherwise, we set , 0.r cp =   We then move to another 

point on the lattice; and the process of calculating probabilities and switching points to 

different phases is repeated until convergence is attained.  The movement from one point 

to another can either be random or ordered.  Both methods are used in physical 

simulations, but there is some debate as to which one is more efficient.  Both methods 

result in convergence, but the speed of convergence can depend on the method 

implemented. 

 Given a random lattice, every lattice point is independent of the remaining lattice 

points.  So, each two-by-two square in the lattice is independent of the other squares save 

for the shared lattice points.  Besides this correlation, there are no other correlations 

between squares within the sample.  Consequently, the conditional distributions from 

Equation (1) should be good approximations to the right conditional distribution.  Figure 



2 shows that using Equation (1) works perfectly for the reconstruction of a random 

lattice.  Note that the target values for the Minkowski functionals and the values 

produced by the Gibbs sampling are so close that they are barely distinguishable in the 

figure.   

Unfortunately, for a lattice that is not random, the individual lattice points are not 

independent of one another.  This dependence between lattice points introduces 

correlations between the two-by-two squares used for calculating Minkowski functionals.  

Equation (1) is no longer sufficient for defining the correct conditional distributions.  

Correcting the conditional distributions for these correlations has proven to be nontrivial 

and we are not able to reformulate Equation (1) into an effective form.  Consequently, we 

cannot implement the Gibbs sampler over a wide range of Minkowski functionals.  

Hence, we cannot produce a wide range of samples; so, it is necessary to try another 

generation method. 

 

B.  METROPOLIS-HASTINGS ALGORITHM 

 Similar to the Gibbs sampler, the Metropolis-Hastings algorithm is only useful if 

a non-iterative generation of a sample from the desired distribution is not possible.  The 

Metropolis-Hastings algorithm is similar to the physical process of freezing a substance 

into a particular state.  The process begins at a high enough temperature such that the 

substance is in the liquid phase.  By slowly lowering the temperature, the substance 

freezes into a particular state.  Some advantages of the Metropolis-Hastings algorithm are 

that it is known to work well for physical simulations and again, like the Gibbs sampler, 



it is fairly easy to implement.  The disadvantages of this method are that convergence is 

not guaranteed and that there are many initial parameters to set.   

For our setup, we choose to maintain the correct area of the phases throughout the 

iterative process.  So, we generate a lattice of phase zero and then switch random lattice 

points to phase one until we have attained the correct areas of the two phases.  At this 

point, we calculate the energy of the system, 
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where t
iv  is the thi  target Minkowski functional and 0

iv  is the thi  Minkowski functional of 

our lattice.  To evolve our system towards ,tiv  or in other words, to minimize the energy 

of our system, we interchange the phase of two randomly selected points from different 

phases.  As noted earlier, we want to maintain the correct area of the phases in our 

system; and that is undoubtedly fulfilled by this method of switching the phases of two 

points.  After the phases are switched, we calculate the new energy of the system E′  

using Equation (2).  The energy difference between the two consecutive states is 

evaluated as .E E E′∆ = −   The new phase is then accepted with probability Pr( )E∆  as 
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where T  is the “temperature”.  As T is lowered, this method causes our system to 

gradually converge to a system that is a sample with the desired Minkowski functionals.   

There are several cooling schedules that are frequently used with Metropolis-

Hastings algorithm; but, we choose a cooling schedule of the form  
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where 0T  is the initial temperature, fT  is the final temperature, i designates the current 

cycle and N is the total number of cycles.  We choose 0T  such that the system is initially 

in the “liquid phase” and allowed to move freely through any of the possible states.  fT  is 

chosen such that it is low enough for the system to freeze into a final state.  Also, N must 

be large enough such that the system does not cool too quickly and become mired in an 

energy local minimum.  

 Furthermore, the system must sit at any given temperature for enough time to 

thoroughly sample all possible states.  Requiring this ensures an even sampling from all 

possible states.  After a sufficient number of runs have been completed, the temperature 

of the system is lowered according to Equation (4).  This process of switching the phase 

of points is repeated until the energy of our system is below some tolerance limit or the 

system becomes stuck in a local energy minimum.  If the algorithm is run successfully, 

then our final state is a sample with the desired Minkowski functionals. 

 Unlike the Gibbs sampler, the Metropolis-Hastings algorithm works with all 

possible Minkowski functionals, whether there are correlations between individual lattice 

points or not.  Figure 3 shows both the target sample and the sample obtained from the 

Metropolis-Hastings algorithm.  Note that the samples have the same Minkowski 

functionals, but they are not exactly the same structure.  However, they are very similar.  

By visual inspection, the samples appear to have roughly the same Euler characteristic 

and the shapes of the two phases are similar. 

 

IV.  MACROSCOPIC PROPERTIES 



 Now that we have established a tool for creating samples with desired Minkowski 

functionals, we are ready to confront the primary question:  can macroscopic properties 

be determined from limited morphological information?  Figure 4 is a plot of the heat 

flux for various Minkowski functionals with a fixed Euler characteristic.  The plot has 

some definite structure, which suggests that the hypothesis under investigation has 

promise.  The samples tested for this plot were generated using a method that is not the 

Metropolis-Hastings algorithm.  However, using the Metropolis-Hastings algorithm will 

allow us to fill in empty spots on the plot, to determine the boundaries of possible 

Minkowski functionals, and to produce more samples with functionals that have already 

been plotted.  This process will be repeated after fixing the Euler characteristic at more 

values.  After this lengthy process is completed, the validity of the hypothesis driving this 

work can finally be evaluated. 

 

V.  CONCLUSION 

  Since porous media are a part of almost everything with which we interact on a 

daily basis, understanding how porous media work is both pragmatic and attractive.  

Accordingly, it is hypothesized that the macroscopic properties of a substance can be 

determined from limited morphological information.  In this paper, the morphological 

information that we investigate are the Minkowski functionals.  The Minkowski 

functionals for a two-phase material in 2-D describe the area and Euler characteristic of a 

particular phase and the boundary length between the two phases.  This is a significant 

amount of information, though it is not completely descriptive as multiple samples with 

different structures can have identical Minkowski functionals. 



 Testing the hypothesis requires the generation of many samples that span the 

possible Minkowski functionals.  A Markov Chain Monte Carlo method is an effective 

means for accomplishing this purpose because direct generation from a distribution is not 

possible.  After testing both the Gibbs sampler and the Metropolis-Hastings algorithm, 

we decide against the Gibbs sampler due to the difficulties of properly defining the 

conditional distributions.  On the other hand, we are successful with the Metropolis-

Hastings algorithm, and it suits our purposes for this investigation. 

 Now that we are able to produce as many samples as are needed with desired 

Minkowski functionals, different macroscopic properties of the samples can be measured.  

Plots similar to that in Figure 4 will tell the tale.  These computations are currently 

underway, and the results will soon be reported.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

FIGURE 1: 

 

Possible two-by-two squares in a lattice with their respective contributions to the total 

Minkowski functionals.  The rotational degeneracies of these structures are repressed as 

they make the same contributions to the total Minkowski functionals.   

 

 

 



FIGURE 2: 

 

Plot of the actual Minkowksi functionals against the Minkowski functionals obtained 

from the Gibbs sampler from reconstruction of a random lattice.  The actual Minkowski 

functionals are 0 1 20.5080,  0.9864,  0.0544v v v= = = and the values obtained from the 

Gibbs sampler are 0 1 20.5080,  0.9864,  0.056.v v v= = =   The values produced by the 

Gibbs sampler are so close to the actual values that the points on the plot are 

indistinguishable. 

 
 
 
 
 
 
 
 
 
 
 
 
 



FIGURE 3: 
 
 
 
 
 
 
 
 
 
 
 
 

 

The sample on the left is obtained from the Metropolis-Hastings algorithm and the 

sample on the right is the sample we use to get the target Minkowski functionals.  The 

Minkowski functionals are identical for these samples. The functionals are 

0 1 2.705028490028490, =.07410256410256410, =-0.0004273504273504270.v v v=  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
FIGURE 4: 
  

 
 
Plot of the heat flux for structures with various Minkowski functionals and a fixed Euler 

characteristic.  The boolean method for producing desired functionals involves placing 

ellipses of phase one into a lattice of phase zero.  The hexagonal method uses a 

honeycomb lattice where the boundaries between hexagons are in phase one. 
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