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I. INTRODUCTION

High energy particle colliders are central in the continuing search for the fundamental laws

of nature, in particular for new physics beyond the Standard Model. Interpreting the data from

the events at such machines, including the Large Hadron Collider currently under construction, is

generally an involved and complicated endeavor. It is always important to know what particles

are being produced in these collisions, and one common method to find out is to construct the

invariant-mass spectrum of jet pairs. If many events involve a particle (for example, a W boson)

with a given mass m0 that decays to two jets, then the expectation is that such a spectrum will

have a peak at m0. However, since there is generally little or no information indicating which

two jets came from the decay of a W, a spectrum must be constructed from all possible pairs of

jets from each event. Since the number of wrong choices can greatly outnumber the single correct

pairing, the expected peak may be totally obscured by the background distribution from those

incorrect choices, rendering it difficult or impossible to determine if there actually is some particle

of this type being produced.

In this paper, we investigate this invariant-mass background, how it changes with the ratio

between m0 and the scale of the momentum of the jets, b. First we cover some elementary ideas of

particle phenomenology with the aim of making this paper accessible to anyone with background

in special relativity and some modern physics. Next we describe our work and results relating

to the invariant-mass distributions of incorrectly chosen jet pairs. In section three we discuss

some insights that basic combinatorics gives into how we should use any additional data about

specific jets in searching for an invariant-mass peak. Finally, we suggest paths for future work and

summarize our results.
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II. SOME ELEMENTARY HIGH ENERGY PHYSICS

The primary method of investigating the fundamental laws of physics is accelerating two

particles—such as electron plus positron or proton plus proton—to greater than 99% the speed

of light and colliding them with each other. From this collision comes other particles that fly

away from the interaction point at relativistic velocities while transmuting and decaying into a

menagerie of other particles, which are then detected. The high energies of the colliding particles

are required to probe the short distances over which the fundamental forces act and to produce

the heavy particles that are important to the theories of those forces. The data that we collect

from detectors built around the intersection point consists of particle trails in tracking chambers,

measures of the particles’ energies, and other information such as electric charge and whether the

particles in the final state interact via the strong force or only the weak force. For our purposes

we may simply consider that we have measured the relativistic 4-vector of each particle that is in

the final state of the interaction.

There are great many such particles produced in a typical collision, so it is useful to simplify

the problem of analyzing the data. A ubiquitous method for doing so is systematically grouping

the particles together into constructs called jets. Due to the strong forces and short lifetimes of the

quarks and gluons produced in the collisions, we do not measure them directly but rather observe

a whole shower of particles for each quark. Since the initial quarks are traveling at high speed, the

particles that they produce travel in a cone centered in the direction of the original quark’s velocity.

These clusters of particles, traveling in roughly the same direction and with a common vertex at

or near the original collision point, are what we call jets. Operationally, they are defined by an

algorithm that searches for clusters of energy deposited in the detector within a certain spatial

extent. Each jet, we assume, has approximately the same energy and momentum as its primordial

quark. The analysis of this paper is done at the level of these jets.

Now that we have these jets, how do we deduce from them what is happening in the events?

For concreteness, suppose we are looking for the W boson, one of the mediators of the weak

interaction. This will be one method of looking at the data from the LHC, for instance. At the

energies there, higher than any yet obtained in colliders, new particles will be produced, and their

decays—whether into Ws or other particles—are clues into their nature and the new physics we

hope to learn. W bosons have about a 70% probability of decaying into two quarks, which we

detect as two jets (Eidelman et al., 2004). We determine that two jets came from the decay of

a W using the concept of invariant-mass. An invariant-mass m is defined for any two 4-vectors:
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m2 = (p1µ+p2µ)2 = (E1+E2)2−(p1+p2)2, where we use the usual choice of units to set } = c = 1.

If two bodies came from the decay of one particle with a rest mass of m0, the invariant-mass of the

two bodies is equal to m0. This can be seen best in the center of momentum frame, where the last

term equals zero and so m = total CM energy after the decay = total CM energy before the decay

= m0. For our purposes, the invariant-mass of two objects that did not come from the decay of

one particle is just some mass scale without any important meaning.

With this tool in hand, we now see that if we have a number of jets in an event and want to

know if a W produced two of them, we can just find the invariant-mass of each pair and check it

against the known mass of the W, mW . Of course it’s not that simple. Since our detectors only

have a certain resolution and the W mass actually has a non-zero width, the invariant-mass of

the correct pair will only approximately be equal to mW . Furthermore, if the other jets in the

event have energies on the same order as the W mass, than the invariant-mass of the incorrect

pairs could, by chance, lie near mW . When we create a histogram of invariant-masses for many

events, we might expect the (narrow) peak around mW to stand out from the (presumably broad)

distribution from the random pairs, but the key point is that there are many more incorrect pairs

than correct ones. For example, a typical event might have six jets, two of which came from a

W. Then there would be
(
6
2

)
= 15 different pairs, 14 of them wrong (background) and only one

right (signal). The signal would be an order of magnitude less than the background, and we would

probably not be able to see it.

III. DERIVING THE INVARIANT-MASS SPECTRA FOR INCORRECT JET PAIRS

A better understanding of this background invariant-mass spectrum could aid in picking out the

signal, or at least let us know under what circumstances we can or cannot hope to see it. Our first

goal, then, is to investigate the shape of the probability density distribution of invariant-mass for

jet pairs given certain assumptions about the jets. The starting point is the probability distribution

for the momentum of jets that are not from the decay of a W or other such particle. Throughout we

assume massless jets to facilitate calculations. Jets are generally composed of many particles, each

having a much greater kinetic energy than rest energy and hence massless to good approximation.

The composite of several massless particles is massless when its components are collimated, that is,

all traveling in the same direction; this is approximately true of many jets. These jet momentum

distributions are empirical; the particular ones used here are especially simple, again to make the

calculations tractable. From elementary probability theory, if some random variable f depends on
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random variables x and y, f = F (x, y), then the distribution of f in terms of the distributions of

x and y is P (f) =
∫∫

Px(x)Py(y) δ(F (x, y)− f) dxdy (Riley et al., 2002). Thus the distribution of

the invariant-mass m̃ of two jets is given by

P (m̃) = 2m̃ Pem2(m̃2) = 2m̃

∫ ∫
P1(p1)P2(p2) δ(m2(p1,p2)− m̃2)

d3p1

E1

d3p2

E2
, (1)

where d3p
E is the infinitesimal for invariant phase space. In general the distributions of the two jets

need not be the same. The normalizations of these probability distributions are
∫

P1,2(p) d3p
E = 1

and
∫

P (m̃) dm̃ = 1. There are three distinct kinds of incorrect pairs that we must consider: two

random jets, one random jet with one from a W, and one jet from a W with another from a different

W. (The fourth possibility, two jets from the same W, is of course the signal.)

There are several momentum distributions that might plausibly be used in actually performing

this calculation. The most realistic for hadron colliders, such as the LHC, uses pseudo-rapidity

coordinates. Events at hadron colliders have, on the average, a kind of cylindrical symmetry.

Letting the z-axis lie along the beam line, the jets’ momenta are evenly distributed around the

usual ϕ angle. The magnitude of the momentum in the x-y plane, the transverse momentum,

typically enters the probability density as an inverse power α between roughly 5 and 6: p−α
T . The

pseudo-rapidity coordinate η is a measure of the particle’s velocity along the beam line. It is

defined η = ln(cot θ
2) and for highly relativistic particles is a good approximation to the rapidity

y = tanh−1(vz), which is the third coordinate in this system. The advantage of rapidity, or in

this common approximation, pseudo-rapidity, is that its transformation rule for boosts in the z

direction is simple addition and subtraction (Rolnick, 1994). This feature results in the simple

distribution of jets in rapidity: constant out to the limits of the detector, which will typically cover

a range of approximately −4 ≤ η ≤ 4. To derive the distributions of jets from the decay of Ws we

use the joint distribution P1(p1)P1(p2) δ(m2
12 −m2

W ), where P1 is the random jet distribution, to

describe both jets and integrate over one of the jets to find the marginal distribution of the other.

The integrals involved in finding P (m̃) given the above distributions for random jets and jets

originating in Ws were not successfully evaluated. An exponential rather than power-law falloff

in pT was used, in hope of easing the computations, giving the normalized distribution P1(p) =
1

4πη0b2
e−pT /b for |η| ≤ η0, where b sets the scale and has units of momentum (= units of energy).

The six-dimensional integral for two random jets was successfully reduced to a two-dimensional

integral analytically, and the remaining integrals were evaluated numerically. The evaluation of this

integral is described in detail below as an typical example of these types of integrals. However, the

nine-dimensional integral for one random jet and one jet from a W was not successfully evaluated,
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even numerically (the twelve-dimensional integral for the double W case was not attempted).

Numerical integration was done using Mathematica’s NIntegrate command and (with somewhat

more success) the Vegas routine of the Cuba library (Hahn, 2005). Since we cannot compare the

three different sources of background given this momentum distribution, we also examine a simpler

case.

The general equation (1) becomes, for the distribution and coordinate system described above,

P (m̃2) =
(

1
4πη0b2

)2 ∫∫∫ ∫∫∫
e−(pT1

+pT2
)/b pT1 pT2 δ

(
2pT1 pT2(cosh(η1 − η2)− cos(ϕ1 − ϕ2))− m̃2

)
(2)dpT1dη1dϕ1 dpT2dη2dϕ2 ,

where the limits are 0 ≤ pT1 , pT2 ≤ ∞; −η0 ≤ η1, η2 ≤ +η0; and 0 ≤ ϕ1, ϕ2 ≤ 2π. The first two

steps in attacking this integral are changing variables to the dimensionless quantities q = pT /b and

s̃ = m̃/b and evaluating one of the ϕ integrals. Since the integrand depends only on the cosine of

∆ϕ = ϕ1 − ϕ2, we may change variables to ∆ϕ and ϕ = ϕ1 and evaluate the trivial ϕ integral to

obtain 2π. These manipulations to (2) yield

P (m̃2) = 2πb2

(
1

4πη0b2

)2 ∫ ∫ ∫ ∫ ∫
e−(q1+q2) q1q2 δ

(
2q1q2(cosh(η1 − η2)− cos ∆ϕ)− s̃2

)
(3)

dq1dη1dq2dη2d∆ϕ ,

where the change of variables produces a 1/b2 from the delta function and a b4 from the other

pT s, leaving just b2. Another of the six integrals may be evaluated easily by a change of variables,

this time in η. Changing variables from η1 and η2 to ∆η = η1 − η2 and η+ = η1 + η2 introduces

a factor of 1/2 from the Jacobian and allows us the evaluate the η+ integral. The natural limits

of ∆η are −2η0 to +2η0, but since the integrand is even in ∆η, we can put in a factor of two and

use 0 ≤ ∆η ≤ 2η0. Since η+ does not appear in the integrand, we can integrate over its range

∆η − 2η0 ≤ η+ ≤ 2η0 −∆η, giving a factor of 2(2η0 −∆η). Doing this, we find

P (m̃2) = 4πb2

(
1

4πη0b2

)2 ∫ ∫ ∫ ∫
e−(q1+q2) q1q2 (2η0 −∆η) δ

(
2q1q2(cosh∆η − cos ∆ϕ)− s̃2

)
(4)

dq1 dq2 d∆η d∆ϕ .

At last it is time to use the delta function. At first glance, there is little to suggest which of the

four integrals it would be best to evaluate using the delta function, but the hard-won experience

of the author dictates that the ∆η integral be eliminated at this point (this has the advantage of

keeping the nice symmetric exponentials simple). This takes ∆η → ± cosh−1( s̃2

2q1q2
+ cos ∆ϕ) and

introduces a factor of one over the Jacobian, J = 2q1q2 sinh∆η. Since everything is even in ∆η,

we may take just the positive root so long as we include a factor of two in front. Care also must
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be taken of the limits of integration. Two theta functions are necessary since the argument of the

delta function only has a zero for certain ranges of the remaining variables, one to guarantee that

the argument of the cosh−1 is greater than one, and another reflecting the bound ∆η ≤ 2η0. All

of this becomes

P (m̃2) = 4πb2

(
1

4πη0b2

)2 ∫ ∞

0
dq1

∫ ∞

0
dq2

∫ 2π

0
d∆ϕ

e−(q1+q2) (2η0 − cosh−1( s̃2

2q1q2
+ cos ∆ϕ))√

( s̃2

2q1q2
+ cos ∆ϕ)2 − 1

(5)

θ

(
s̃2

2q1q2
+ cos ∆ϕ− 1

)
θ

(
cosh 2η0 −

s̃2

2q1q2
− cos ∆ϕ

)
.

The next step comes from noticing that the limits of integration, complicated as they are written

now, are simple in terms of the product ρ = q1q2. Since the integrand depends on ρ and σ = q1+q2,

we now change to those two variables. With the Jacobian 1/
√

σ2 − 4ρ , we have

P (m̃2) = 4πb2

(
1

4πη0b2

)2 ∫ 2π

0
d∆ϕ

∫ ρmax

ρmin

dρ

∫ ∞

2
√

ρ
dσ

e−σ (2η0 − cosh−1( s̃2

2ρ + cos ∆ϕ))√
(σ2 − 4ρ)( s̃2

2ρ + cos ∆ϕ)2 − 1)
, (6)

where ρmin = s̃2/2
cosh 2η0−cos ∆ϕ and ρmax = s̃2/2

1−cos ∆ϕ . The σ integral is our next target, and the

change of variables σ → σ̄ = σ
2
√

ρ reveals it to be nothing but the defining integral of the K0 Bessel

function: ∫ ∞

2
√

ρ

e−σ√
σ2 − 4ρ

dσ =
∫ ∞

1

e−σ̄(2
√

ρ)

√
σ̄2 − 1

dσ̄ = K0(2
√

ρ).

Finally, we are left with a two dimensional integral:

P (m̃2) = 4πb2

(
1

4πη0b2

)2 ∫ 2π

0
d∆ϕ

∫ ρmax

ρmin

dρK0(2
√

ρ)
2η0 − cosh−1( s̃2

2ρ + cos ∆ϕ)√
( s̃2

2ρ + cos ∆ϕ)2 − 1
. (7)

Attempts to continue to evaluate this integral analytically have not met with success, so the final

integrals must be evaluated numerically with a computer program such as Mathematica, which

was done successfully. This sample integral is typical of the ones that were evaluated to find the

invariant-mass distributions for other jet momentum distributions.

Instead of even distributions in rapidity, we next use spherically symmetric distributions with

exponential falloff in |p|. This simplifies matters considerably, as there is no preferred direction such

as the z-axis was in the rapidity case. The only angle the integrals care about is the one between

the two jets, making it feasible to proceed further analytically (in particular, the expression for

invariant-mass squared in the delta function is much simpler). Here we are able to evaluate the two

lower-dimensional integrals entirely analytically, and the last can be done be numerically without

difficulty. It is in comparing the distributions of the three sources of background that we see that
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when the resonant mass m0 and the jet scale b are roughly the same (1 . m0
b . 3), the three

distributions are all similar in shape and magnitude, as seen in Fig. 1. This suggests that we group

the three sources of background together and examine the amount of background as a whole.

IV. INCREASING THE SIGNAL-TO-BACKGROUND RATIO

In this final section we consider the total integrated background and compare how its magnitude

relative to the signal varies with the total number of jets in each event and with the use of a

tagging algorithm (with efficiency and false positive rates) that can be used to reject jets that do

not come from a W. Methods that attempt to tag jets as not from a W commonly use the detailed

information about the constitutions of each jet. One example is b-tagging: the b mesons that come

from b quarks have lifetimes such that they may fly several millimeters before decaying, so if the

constituents of a jet include one or more tracks indicating some vertex spatially separated from

the vertex of all the other tracks in the event, that jet may be tagged with a certain confidence as

originating in a b quark. Since Ws only very rarely produce a b quark in their decays, b tagged

jets may be removed from consideration when searching for Ws. However, the rate at which jets

from b quarks are successfully tagged is commonly low, around 50%, and the rate at which non-b

jets are tagged is greater than zero, perhaps 15% (the exact numbers depend on the details of the

detector and the event and the precise algorithm used in tagging). Thus, in looking at events that

have b-tagged jets, we are compromising our data in two ways. We are using a smaller subset

of events, since not all events will get b-tags, and we are throwing away a few correct jets in the

events we are using. The first issue is one of the total quantity of data collected: do we have

so few total events that if we look just for those with the maximum possible number of tags we

will be left with a sample too small to give any statistically significant results? The second is a

question of combinatorics: how does the signal-to-background ratio change with the number of

tags in each event? Due to the constraints of time on our research, this paper will cover only the

second question.

The signal-to-background ratio for n-jet events with k tags where a fraction fk of the events

have two jets from a W, neither of which is among the tagged jets, is given by

S

B
=

fk(
n−k

2

)
− fk

. (8)

By rejecting from consideration those jets that are tagged, we are reducing n − k and therefore(
n−k

2

)
= (n− k)(n− k − 1)/2, while also reducing f due to false positive tags of jets that actually
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are from a W. It is easy to show that if k ≤ n − 2 jets are removed from each event purely at

random then S/B remains unchanged. We therefore expect that any tagging method even slightly

better than random will improve S/B. We choose to examine in detail the case n = 4, for which

useful events could have zero, one, or two tags. The only thing needed to find S/B in these three

cases is the formula for f in terms of the tagging efficiency ε and the false positive rate ρ. To

illustrate the routine for calculating f in general, we show the calculation in detail for a slightly

simpler case: 2 jets events where one is from a W (jet A) and one is not (jet B), there is one tag,

and f is the fraction of events with one tag where the non-W jet was the one tagged. There are

two ways for a given event to be placed in the one-tag group: A could be tagged and B not, with

probability ε(1 − ρ); or B could be tagged and A not, with probability (1 − ε)ρ. The ratio of the

correctly one-tagged events to all the one-tagged events is f = ε(1−ρ)
ε(1−ρ)+(1−ε)ρ . Using this logic we

find in the n = 4 case, after algebraic simplifications,

f0 = 1

f1 =
ε(1− ρ)

ε(1− ρ) + (1− ε)ρ

f2 =
ε2(1− ρ)2

ε2(1− ρ)2 + 4ε(1− ε)ρ(1− ρ) + (1− ε)2ρ2

To see the effect on S/B of using events with tags, we plug these formulae into (8) and and plot

S/B versus ε for a given ρ in Fig. 2. As the figure shows, S/B in the k = 2 case is much greater

than in the other cases. It is also instructive to calculate how much the use of b-tagging would

improve S/B in a somewhat realistic case. Given the b-tagging efficiency and false positive rates

above, 50% and 15%, we also must have information about how actually being from a b quark

is correlated with not being from a W. The fraction of quarks produced by W decay that are b

quarks is very small, let us say 1%. The fraction of jets not from a W that are b quark jets depends

on the specifics of the event, but 20% is a reasonable number. These numbers combine to give us

our ultimate efficiency and false positive rates in the following way:

ε = 0.2 · 0.5 + 0.01 · 0.15 ≈ 0.1

ρ = 0.2 · 0.15 + 0.01 · 0.5 ≈ 0.03

Plugging these numbers into the formulae for S/B in the n = 4 case, we find that S/B increases

from 0.20 to 0.35 to 0.84 as the number of jets tagged goes from 0 to 2. In the n = 5 case, S/B

goes as 0.07, 0.16, 0.27, 0.52 as the number tagged goes from 0 to 3.
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From this we conclude that great improvements can be made to the signal-to-background ratio

by utilizing a tagging method to the fullest extent possible, even when that method is quite ineffi-

cient. Qualitatively, this may be understood as the quadratic dependence of
(
n
2

)
on n overwhelming

the weaker dependence of f on ε and ρ. The gives new force to what in some sense we already

knew: the sheer number of combinatorial possibilities is the source of the problem, and anything

that can be used to cut down the number of jets should be used.

V. CONCLUSION AND POSSIBLE FUTURE WORK

The combinatorial background to invariant-mass distributions at particle colliders was inves-

tigated by means of evaluating high-dimensional integrals both analytically and numerically for

several distributions of jet momentum. It was found that for certain scales the three components

of the background had similar distributions. This suggested an analysis that grouped the different

parts of the background together and focused on the signal-to-background ratio. This analysis

offers a simple rule of thumb to make the signal stand out from the background: use all available

information to reduce the number of jets under consideration in each event as much as possible.

Probably the biggest gap in this research as it stands is the effect of following the above rule

on the sample size under consideration. Given finite data, it must be the case that there is some

optimum level beyond which making still more cuts will reduce the sample under consideration so

much as to outweigh the benefit of a cleaner signal. This, and the predictions about S/B, could be

tested against simulated data. Another obvious way to extend this work would be to push forward

with the numerical integration necessary to find the invariant-mass distributions for more realistic

momentum distributions.
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FIG. 1 The invariant mass distributions for the three different types of pairs. This is for the spherical case

with an exponential falloff in |p|, b = 1, and m0 = 2. Running from most to least in the vicinity of m = 2

are the distributions for jets from two Ws, one random and one W, and two random.
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FIG. 2 S/B plotted against ε for ρ = 0.2 in the case n = 4. The flat line is for events with no tags, the

concave down line for one tag events, and the concave up line for two tag events (k = 0, 1, or 2, respectively).


