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Abstract
It is well known that in gauge theories, the spin (and orbital angular momentum) of gauge

particles is not gauge-invariant, although the helicity is; neither are the canonical momentum and

canonical angular momentum of charged particles. However, the simple appeal of these concepts

has motivated repeated attempts to resurrect them as physical descriptions of gauge systems. In

particular, measurability of the gluon-spin-contribution to the proton helicity in polarized proton

scattering has generated much theoretical efforts in generalizing it and others as gauge-invariant

quantities. In this work, we analyze constraints of gauge symmetry, the significance of gluon spin

in the light-cone gauge, and what-is-possible-and-natural in QCD parton physics, emphasizing

experimental observability and physical interpretation in the structure of bound states. We also

comment on the measurability of the orbital angular momentum of the Laguerre-Gaussian laser

modes in optics.
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I. INTRODUCTION

Feynman’s parton is a powerful idea in describing high-energy collisions of hadrons [1].
The parton concept grows out of a simple model for hadrons in the infinite momentum frame
(IMF), i.e., observers or systems traveling at the speed of light, in which the interactions
are slowed down by Lorentz dilation and the hadrons appear to be simply a collection of
non-interacting partons. When quantum chromodynamics (QCD) was proposed as the fun-
damental quantum theory to describe the physics of strong interactions, the parton picture
survived with two minor modifications: First, it emerges in a special choice of gauge, the
light-cone gauge A+ = 0 (where + means a combination (A0 +A3)/

√
2 of Aµ, µ = 0, 1, 2, 3,

if the hadron is moving in the 3-direction) because the quarks do interact with each other
through an SU(3) color gauge field, even in IMF. In this choice of gauge, the interaction
effects are nominally gone. Second, partons are differently at different (momentum) resolu-
tion scales again due to color interactions; however, the scale evolution can be computed in
QCD perturbation theory and is believed under control [2]. Of course, QCD also permits
studying effects beyond the simple parton model by including parton correlations, transverse
momentum, off-shellnesss, etc. These effects cannot be studied model-independently, and
one must invoke high-twist factorization and expansions [3, 4].

Because the parton concept has been so appealing, it often motivates attempts to do away
with the gauge symmetry of QCD and search for “physical observables” which are intuitive in
non-interacting theory but “unnatural” due to gauge symmetry constraints. These attempts
occasionally have met remarkable successes. For example, although the gluon spin is not
a gauge-invariant concept, the gluons in IMF have momentum predominantly along the 3-
direction and appear to be on-shell. A free gluon is defined to have helicity either +1 or −1.
It is then a simple matter to define the gluon helicity density ∆g(x) as the density difference
of two different helicities. The total gluon polarization ∆G =

∫
∆g(x) is a measurable

quantity through hard scattering, and therefore must be gauge-invariant. On the other
hand, in the rest frame of the nucleon, the transverse component of the gluon momentum
is by no means negligible, and the projection of the gluon spin along the 3-direction is no
longer gauge invariant. Moreover, as a part of the bound state, the gluons are necessarily
off-shell. An off-shell gluon, as in the gluon propagator, is hard to define gauge-invariantly.
Therefore, ∆g(x) is no longer simple to interpret as the bound state property of the nucleon,
although it is a matrix element of a gauge-invariant operator, non-local and complicated in
general framework [5]. Nonetheless, in the light-cone gauge, it reduces to the simple gluon
spin operator along the 3-direction, reminiscent of the IMF physics.

The example of the IMF gluon helicity has motivated myriad attempts to define parton
canonical momentum and canonical orbital angular momentum (OAM). In particular, there
appears a recent attempt to completely reinvent the concept of gauge invariance by propos-
ing decomposing the gauge potential into the so-called physical and pure-gauge parts, and
defining various “physical observables” with the physical part [6, 7]. The standard textbook
result that gluons carry about one half of the nucleon momentum has been challenged by the
new definition of the parton canonical momentum. There have been a number of follow-up
studies in the literature [8–12].

In a different context, there have been many studies about the parton transverse-
momentum-dependent (TMD) factorization “theorems” in the literature. While in some
cases, these theorems can be argued or even proved and the relevant distributions are gauge-
invariant [13]. In many other cases, such factorizations are simply model assumptions, and
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do not meet the requirement of gauge symmetry. In particular, when the parton transverse
momentum is fully taken into account, the twist-expansion is often lost in the sense that all
twists are now involved. There seems no systematic expansion since there are no arguments
why extra gluons with transverse polarizations shall not be included in the calculations [14].

In this paper, we analyze the constraints of gauge symmetry on bound state properties
and parton physics. In Sec. II, we make some general remarks about gauge symmetry, in
particular, how to maintain gauge symmetry in a fixed-gauge calculation. We emphasize
that the wave function is a gauge-dependent concept and a gauge symmetric matrix element
emerges only when the operator is manifestly gauge symmetric, modulo the so-called BRST
exact operators and equations-of-motion operators in the covariant gauge. In Sec. III, we
analyze the gauge symmetry in parton physics and in particular in the case of the gluon
polarization. We point out that while gluons appear as on-shell radiation in IMF, they are
off-shell and have transverse-momentum as a part of the bound state. We introduce the
concept of gauge-invariant extension (GIE) to make connection between parton physics and
gauge symmetry. In Sec. IV, we discuss GIE of the Coulomb gauge in connection with the
work of Chen et al. We comment that result of the Wakamatsu’s calculation of the scale
evolution for the gluon spin is in fact a light-cone gauge result [9]. We will also discuss the
spin and OAM in the case of photon radiation fields in optics. We conclude the paper in
Sec. V.

II. GENERAL REMARKS ABOUT GAUGE SYMMETRY

In this section, we are going to make some general remarks about gauge symmetry. We
emphasize that wave functions in non-relativistic quantum mechanics are gauge dependent,
and the mechanical momentum of the charged particles corresponds to the covariant deriva-
tive in quantum theory. We argue that in atomic systems, because of the non-relativistic
approximation, the partial derivative is actually gauge-invariant to leading order in v/c ex-
pansion. We then consider the gauge symmetry in quantum field theories, reminding the
reader why gauge choice is a necessity and how a gauge-invariant result emerges from a
fixed-gauge calculation. We also comment on the relation between gauge symmetry and
Lorentz symmetry. These remarks are by no means novel, and many are present in text-
books or papers. However, they lay important general framework and will be useful for the
discussions in the remainder of the paper.

A. Gauge symmetry in non-relativistic quantum mechanics

Let’s first consider gauge symmetry in non-relativistic quantum theory with electromag-
netic interactions. For a charged particle moving in an external electromagnetic field, the
Hamiltonian is,

H =
(P⃗ − eA⃗)2

2m
+ eϕ , (1)

where P⃗ is the canonical momentum and we have customarily called A0 ≡ ϕ. It has the
following eigenvalue problem,

Hψn(r⃗) = Enψn(r⃗) , (2)

with energy eigen-values En and energy eigenfunctions ψn(r⃗).

3



Under a time-independent gauge transformation,

Aµ(r⃗) → Aµ′(r⃗) = Aµ(r⃗) + ∂µχ(r⃗) , (3)

we obtain a new Hamiltonian,

H ′ =
(P⃗ − eA⃗′)2

2m
+ eϕ , (4)

which is manifestly different. However, it has the same quantum mechanical eigen-energy,

H ′ψ′
n(r⃗) = Enψ

′
n(r⃗) , (5)

where ψ′
n = eieχ(r⃗)ψn(r⃗) is the eigenfunction in the new gauge. Thus, while the charged

particle probability density
ρn(r⃗) = ψ∗

n(r⃗)ψn(r⃗) , (6)

is gauge invariant, the charged particle canonical momentum P⃗ (which quantizes as a partial
derivative) expectation value is not⟨

ψ′
m

∣∣∣P⃗ ∣∣∣ψ′
n

⟩
=

⟨
ψm

∣∣∣P⃗ ∣∣∣ψn

⟩
+ e ⟨ψm |∇χ(r⃗)|ψn⟩ . (7)

Thus the proof that the canonical momentum matrix element is gauge-invariant in Ref.
[11] is likely incorrect. Actually, in Ref. [11] the gauge transformation leaves the physical
states invariant, but that is not true according to Eq. (5): wavefunction is a not a gauge-

independent quantity. It is the matrix element of the mechanical momentum p⃗ = P⃗ − eA⃗
that is gauge invariant, ⟨

ψ′
m

∣∣∣P⃗ − eA⃗′
∣∣∣ψ′

n

⟩
=

⟨
ψm

∣∣∣P⃗ − eA⃗
∣∣∣ψn

⟩
, (8)

which corresponds to the covariant derivative in quantization, p⃗ = P⃗ − eA⃗ ≡ −iD⃗.
In Feynman’s lectures on physics, he gave a simple example to demonstrate that it is the

covariant derivative that corresponds to the mechanical momentum in quantum mechan-
ics [15]: Consider a charged particle near a solenoid, which has a quantum mechanical wave
function ψ(r⃗, t). The solenoid does not have any current in the beginning. At some point
in time, a current passes through the solenoid and a stable magnetic field is established. In
the process, the particle gets a momentum kick because a changing magnetic field induces
an electric field which exerts a force on the charged particle. In quantum mechanical cal-
culation, this momentum kick cannot be obtained from the partial derivative acting on the
wave function because the latter is continuous in time. This momentum kick comes from
the establishment of the vector potential A⃗ in the system.

B. Atom systems and Coulomb gauge

Atoms are to a very good approximation non-relativistic systems. In such systems, the
charge effects are much larger than current interactions, and the dominant interaction is
the static Coulomb force. Let us establish a power counting in terms of the velocity v and
electromagnetic coupling e [16]. The fine structure constant e2/4π = αem is a small quantity,
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and so is the typical velocity of the charged particle v/c ∼ αem. We will show through
power counting that the canonical momentum and canonical OAM are approximately gauge-
invariant.

In non-relativistic systems,
B/E ∼ v/c . (9)

We are going to use this to establish a power counting for the four-vector potentials. Ac-
cording to the definition

E⃗ = −∇ϕ− ∂A⃗

∂t
, B⃗ = ∇× A⃗ , (10)

Since the electrostatic interaction eϕ is order of α2
em (recall the Bohr energy), we have

ϕ ∼ eαem; E ∼ evαem . (11)

In principle, we can choose A⃗ to be of the same order of magnitude as the above. However,
since B⃗ is suppressed by a factor of v/c relative to E⃗, the transverse part of A⃗ must be
suppressed by the same factor. To have a natural power counting, one shall work only in
the class of gauges in which the longitudinal part of A⃗ is similarly suppressed. One gauge
that satisfies this condition is the Coulomb gauge,

∇ · A⃗ = 0 . (12)

which eliminates the longitudinal part of the gauge potential entirely. Thus the Coulomb
gauge is a natural choice for non-relativistic systems.

According to the above, the counting for the vector potential in Coulomb gauge is

A⃗ ∼ evαem . (13)

Thus eA⃗ in Coulomb gauge is α2
em suppressed related to the canonical momentum P⃗ =

−i∇ ∼ v. Thus,
p⃗ = P⃗ +O(vα2

em) , (14)

and the canonical momentum is gauge-invariant to the relative order α2
em. This explains

why the canonical momentum and canonical OAM are useful concepts in atomic systems.
Of course, one can choose to work in a gauge in which eA⃗ is not suppressed at all relative

to P⃗ . Then the atomic wave functions will be different, and the physical momentum and
OAM must follow from the mechanical momentum and mechanical OAM.

In the QCD bound states, such as the nucleon, the above power counting fails. In
particular, the color magnetic field B⃗a is not suppressed relative to the color electric field
E⃗a. Moreover, the quark motion is entirely relativistic. Therefore, the eA⃗ and P⃗ have
the same order of magnitude. The Coulomb gauge is no longer special to keep the power
counting natural. In the factorization theorems involving parton transverse momentum, it
is often assumed that parton canonical momentum is much larger than the transverse gauge
potential in light-cone gauge. There is no known physical basis for this assumption.

C. Quantization of QED and gauge symmetry

Here we consider gauge-symmetry constraints in quantum field theories. For simplicity,
we take the U(1) gauge theory with a spin-1/2 fermion, such as quantum electrodynamics
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(QED). The Lagrangian density is

L = ψ(iγµD
µ −m)ψ − 1

4
F µνFµν , (15)

where ψ is the electron’s Dirac field and Aµ is the U(1) gauge potential.
Aµ has two physical degrees of freedom; it also mediates static electric and magnetic

interactions among charged particles. However, Aµ does have spurious degrees of freedom
that must be constrained in order to have a finite photon propagator. Thus, quantization of
a gauge theory requires gauge fixing, which ironically breaks the gauge symmetry. Although
the symmetry is no longer manifest after quantization, the physical observables in terms
of the physical degrees of freedom shall be independent of the spurious gauge dynamics.
This can be verified either through residual gauge symmetry after gauge fixing or through
comparing calculations in different gauges.

Different gauge fixings often lead to different Hilbert spaces, and the physical states are
gauge dependent, just as in the case of non-relativistic system described in the previous
subsection. For instance, in the Coulomb gauge, all quanta in the Hilbert space are physical
degrees of freedoms, whereas in the Weyl gauge A0 = 0, the longitudinal polarization of
the photon is allowed, and the physical states are chosen through Coulomb’s law constraint
(∇ · E⃗ − ρ)|Ψphys⟩ = 0. In the covariant Lorentz gauge, all four polarizations of the pho-
tons are allowed and the physical Hilbert space is constrained by Lorentz gauge condition
∂µA

µ|ψphys⟩ = 0. However, due to the residual gauge freedoms, the physical states is still
not unique. It can contain non-physical quanta.

Despite the fact that all Green’s functions and wavefunctions are gauge-dependent, the
poles of the Green’s functions and scattering S-matrix are gauge invariant. Usually the
proof is done using residual gauge symmetry. Here we are concerned with the physical
matrix elements in an asymptotic states ⟨ψ|O|ϕ⟩. In order for them to be gauge invariant,
we have to study general gauge symmetry transformation. Let’s assume a super-operator G
which brings the physical states from one gauge to another,

|ψ⟩′ = G|ψ⟩ . (16)

Then the matrix element is invariant under gauge transformation,

⟨ψ′|O′|ϕ′⟩ = ⟨ψ|O|ϕ⟩ , (17)

only if O′ = GOG−1 is gauge invariant, that is, has the same dependence on the gauge
potential as in O. Clearly the gauge transformations here cannot be a classical one, it must
be quantum operators.

The requirement for matrix elements to be gauge-invariant is much simpler to see in
path-integral formulation [17]. The sufficient condition again is that the operator has to be
manifestly gauge-invariant.

Of course, it is not necessary to have gauge-invariant operators in order for its phys-
ical matrix elements to be gauge-invariant. In covariant quantization, it is known that
the equations-of-motion operators and the so-called BRST-exact operator do vanish in the
physical states [18]. For the example of energy-momentum tensor, see [19]. It is also taken
as true that the gauge-variant total derivative operators do vanish in well-localized states.
However, in the plane wave states, the total derivative operators do contribute to the non-
forward matrix elements. Thus one has to be careful about the total derivative operators
particularly when they are gauge dependent.
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The matrix element of a gauge-dependent operator usually vanishes when averaging over
all gauges, just like the velocity vector vanishes when summing over contributions from all
frames.

D. Lorentz symmetry

According to Einstein’s theory of special relativity, all physical quantities shall be Lorentz
tensors, i.e., when coordinates transform, they behave either as scalars, four-vectors, or
high-order tensors. Therefore, when making a frame transformation, one easily obtains the
physical quantities in one frame from the others. In gauge theories, because not all four-
components of Aµ are physical, calculations are found not to be manifestly Lorentz covariant.
For example, the gauge choices often break Lorentz symmetry when the gauge conditions
are frame-dependent. However, for local gauge-invariant quantities, Lorentz symmetry is
manifestly kept in calculations [20]. For non-local operators, one has to introduce gauge
links which often involve geometrical lines. The transformation of such a line is usually
complicated, and Lorentz symmetry transformation of non-local operators often becomes
intractable. In this case, one considers the subclass of Lorentz transformation which leaves
the line invariant.

In the case of non-covariant gauges, calculations in different frame often correspond to
different gauge choices. Therefore, gauge symmetry of the calculations is a necessary condi-
tion to maintain Lorentz symmetry, or vice versa. We note that in quantum theory, the wave
function of a system is not a Lorentz invariant quantity, it changes with the coordinates.
Such a change is not just a kinematic transformation, it involves Lorentz boost which is
usually interaction-dependent. Thus boosting a wave function is a highly nontrivial matter
in a relativistic interacting theory.

III. EXTENDED GAUGE INVARIANCE IN PARTON PHYSICS

In high-energy scattering in QCD, partons are often used to describe the scattering pro-
cesses involving large momentum transfers [1]. Total scattering amplitudes usually contain
two factorized parts, described as factorization theorems [2]. One part contains the product
of parton densities and/or fragmentation functions and/or soft functions. As far as the hard
scattering is concerned, the hadrons can be viewed as beams of non-interacting partons,
and the parton densities simply describe the properties of the beams. The second part is
the parton scattering cross section, which involves scattering of on-shell colored particles.
Feynman’s parton language greatly simplifies the description of high-energy scattering. The
prove of the factorization theorems is to show that the cross section has a systematic expan-
sion in terms of the inverse powers of large momenta and that the leading factorized parts
are naturally gauge-invariant.

A. Gauge symmetry of parton density and physics in light-cone gauge

One of the keys to the parton language description of high-energy scattering is gauge
symmetry and light-cone gauge, A+ = 0. [Here we use the light-cone coordinates A± =
(A0 ± A3)/

√
2, A⊥ = (A1, A2), and it is well known that the light-cone coordinates are
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equivalent to the use of IMF.] The parton density can be described as the matrix element of
gauge-invariant operators in hadron states, and since the cross section is gauge-invariant by
itself, this means that the on-shell parton scattering cross section is also gauge-invariant and
can be calculated independently in any gauge. This can also be seen from that the parton
cross sections involve only on-shell parton scattering. The gauge-invariance, however, masks
the physical property of the parton density operator. For example, the quark longitudinal-
momentum density distribution

q(x) =
1

2P+

∫
dλ

2π
eiλx⟨PS|Ψ(λn)γ+Ψ(0)|PS⟩ , (18)

where n is a light-like four-vector n2 = 0 and the nucleon momentum is P µ = (P 0, 0, 0, P 3),
with P · n = 1. Ψ(ξ) is a gauge-invariant quark field defined through multiplication of a
light-cone gauge link

Ψ(ξ) = exp

(
−ig

∫ ∞

0

n · A(ξ + λn)dλ

)
ψ(ξ) . (19)

This gauge link ensures that whenever a partial derivative or canonical momentum of colored
quarks appears, the gauge potential Aµ must be present simultaneously to make it a covariant
derivative (kinetic momentum), Dµ = ∂µ + igAµ. Indeed, taking its moments,∫

xn−1q(x)dx ∼ nµ1 ...nµn⟨P |ψ(0)γµ1iDµ2 ...iDµnψ(0)|P ⟩ , (20)

we see that the parton momentum distribution refers to the gauge-invariant kinetic momen-
tum! The kinetic momentum structure is clearly seen through Feynman diagrams in Fig.
1: Gauge symmetry requires that a parton with kinetic momentum k+ = xP+ includes the
sum of all diagrams with towers of longitudinal gluon A+ insertions.

x y x− y y z x− y − z

A+ A+ A+

FIG. 1: Deep-inelastic scattering process in which the gauge invariance involving the longitudinal

quark kinetic momentum xP+ is achieved through insertions of gluons with longitudinal polariza-

tion A+.

Simple parton physics emerges in the light-cone gauge A+ = 0, where the light-cone
gauge link disappears, all the covariant derivatives in Eq. (20) become partial ones, i.e.,
the canonical momentum and the simple quark field become physical. One can use the
light-cone quantization to write

ψ+(ξ) =

∫
dk+d2k⊥
2k+(2π)3

[
d†(k+, k⊥)v(k

+, k⊥)e
i(k+ξ−−k⃗⊥·ξ⃗⊥) + b(k+, k⊥)u(k

+, k⊥)e
−i(k+ξ−−k⃗⊥·ξ⃗⊥)

]
(21)
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Inserting the above expression into the parton density, one finds for x > 0,

q(x) =

∫
d2k⊥

2k+(2π)3
⟨P |b†(xP+, k⊥)b(xP

+, k⊥)|P ⟩ , (22)

which is a genuine number-density distribution.
While the parton language simplifies the description of a scattering process considerably,

one does not have to choose the light-cone gauge A+ = 0. There shall always exist a natural
gauge-invariant formalism which embodies the factorization, such as the presence of the
matrix elements of the twist-two gauge-invariant operators.

In recent years, there have been many discussions on the so-called kT -dependent factor-
izations. The motivation is to take into account the effects of parton transverse momentum
in the scattering processes. In some cases where there is a systematic power counting for
the relevant physical observable, the factorization is gauge-invariant [13]. However, in many
other cases, the factorization is basically a model assumption which cannot be justified be-
cause other contributions of the same order have been neglected and the result is not gauge
invariant [14].

B. Gluon spin

It is well-known that in gauge theories, the spin operator of a gauge particle, defined as

S⃗g =

∫
d3ξE⃗ × A⃗ , (23)

is not a gauge invariant quantity [21], because of the manifest dependence on the gauge

potential A⃗. This applies for photons in QED and gluons in QCD. However, its helicity,
i.e., the projection of S⃗g along the direction of momentum, is gauge-invariant. This can be

easily seen from vanishing of the gauge-dependent term (∇⃗ × ∇⃗χ) · E⃗. Helicity is also a
projection of the total angular momentum along the direction of motion, as obviously the
orbital part does not contribute. The helicity of a vector gauge particle is defined to be +1
or −1, corresponding to right-handed or left-handed polarization, respectively.

While helicity is a useful gauge-invariant concept, it shall not be confused with spin
projection. For example, the spin vector S⃗g calculated along the ⊥-direction for a photon
moving in the 3-direction definitely depends on the choice of the wave function or gauge.
Many concepts developed in radiation physics use helicity as a starting point. For example,
the well-known electromagnetic multipoles are constructed with Wigner rotation matrices
applying to the plane-wave states with good helicities [21].

A nucleon with large 3-momentum P3 → ∞ are made of off-shell (virtual) constituents
with large 3-momenta, xP3, as well. In high-energy scattering, only this 3-momentum is
important and the transverse component and off-shellness can be neglected, because they
produce subleading effects in the parton scattering cross section. Therefore, as far as the
hard scattering process is concerned, the nucleon appears to be made of a beams of massless
on-shell partons (quarks and gluons) moving in the same direction (called equivalent-photon
or Weizsäcker-Williams approximation in QED [22]). For such a beam of gluons, the helicity
is a good quantum number. The total beam helicity, the difference between the number of
particles with positive and negative helicity, is also a physical observable. Thus, we have
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the gauge -invariant gluon helicity distribution ∆g(x),

∆g(x) = g+(x)− g−(x) , (24)

where g±(x) is the density of gluons with momentum x and helicity P̂ · S⃗g = ±1.
However, in the bound state nucleon, the gluons are virtual quanta which not only involve

transverse polarization but also longitudinal one. They are off-shell particles whose wave
function cannot be defined in a gauge-invariant way. Thus, the gluon helicity distribution
formally is a matrix element of a complicated non-local operator,

∆g(x) =
i

2x(P+)2

∫
dλ

2π
eixλ⟨PS|F+α(λn)L[λn−,0]F̃

+
α(0)|PS⟩ . (25)

where F̃ αβ = 1/2ϵαβµνFµν and L[λn−,0] is a light-cone gauge link. The need for gauge in-
variance dictates that it must be the gluon field strength F µν that appears and the gauge
link ensures cancelation of the gauge transformation factors U from two different spacetime
points. The QCD expression only ensures that in IMF and light-cone gauge, it reduces to
the simple gluon helicity counting,

∆g(x) =

∫
d2k⊥

2k+(2π)2
⟨P |a†+1(xP

+, k⊥)a+1(xP
+, k⊥)− a†−1(xP

+, k⊥)a−1(xP
+, k⊥)|P ⟩ (26)

In light-cone quantization with A+ = 0, an on-shell gluon has two physical polarizations,
described by the transverse components of the gauge potential A⊥. The matrix element is,
however, independent of the momentum in the 3-direction and can be taken in the rest frame
of the nucleon. However, in such a frame, the gluon parton’s transverse momentum definitely
cannot be neglected, neither does its off-shellness. For these gluons, their spin projection
in the 3-direction is no longer gauge-invariant; and one cannot define the gauge-invariant
gluon helicity in a simple fashion. Therefore, ∆g(x) does not have a straightforward physical
interpretation as the property of the bound state.

Indeed, when integrating over all x, one gets the total parton helicity operator in a
longitudinally polarized nucleon

Sinv
g =

i

2

∫
dx

xP+

∫
d3ξeixξ

−P+

F+α(ξ−)L[ξ−,0]F̃
+
α(0) , (27)

which is a non-local operator, and again has no clear gauge-invariant physical interpretation.
Sg has a simple interpretation only in the light-cone gauge: it reduces to the the gluon spin,

Sinv
g |A+=0 =

∫
d3ξ(E⃗ × A⃗)3 . (28)

Of course, as we have discussed in Sec. II, the same operator defined in other gauges has
entirely a different bound-state matrix element.

The above discussion makes clear that while gluon spin is not a gauge-invariant quan-
tity, but in the light-cone gauge and frame, the gluons in a bound state may be regarded
as on-shell and the gluon helicity becomes a useful concept and can be measured experi-
mentally [22]. Leaving this specific gauge and frame, this quantity involves longitudinally
polarized gluons and no longer has a clear physical interpretation despite that it can be
defined and calculated gauge-invariantly. This motivates going beyond the traditional sense
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of gauge symmetry by introducing the gauge-invariant extension (GIE) of some apparently
gauge-dependent quantities. A GIE of a gauge-variant quantity is to generalize the fixed
gauge result extrapolated to any other gauge. There are an infinite number of GIE for a
gauge-dependent quantity depending on the gauges in which one decides to generalize. The
gluon spin operator in the light-cone gauge has its GIE in Eq. (27) [5].

C. GIE of parton observables

Parton physics emerges in the set-up of IMF and light-cone gauge. In a fixed gauge, not
all results are naturally gauge-invariant, as gauge fixing often masks the gauge symmetry
properties of both gauge-invariant as well as non-invariant quantities. This is similar to
calculations in a fixed system of coordinates where physical quantities often do not have
apparent properties of the underlying tensors.

One can make GIE for any partonic operators using the same approach as in the case
of the gluon spin, so that in any other gauges, GIE partonic operators produce the same
matrix elements as in the light-cone gauge.

For example, a GIE of the partial derivative in light-cone gauge is

i∂⊥ξ = iD⊥
ξ +

∫ ξ−

dη−L[ξ−,η−]gF
+⊥(η−, ξ⊥)L[η−,ξ−] . (29)

In this way, the partial derivative in the light-cone gauge becomes gauge-invariant, and
therefore one can talk about “gauge-invariant” canonical momentum and orbital angular
momentum. In fact, the canonical version of the spin sum rule discussed in Ref. [23, 24] and
its scale evolution [17] can be understood as “gauge-invariant” in this sense [25, 26].

In the same sense, one may regard all kT dependent factorization result as gauge invariant.

D. Problems with gauge-invariant extension

Clearly, GIE of an intrinsically gauge-noninvariant quantity is not naturally gauge invari-
ant. As such, its usage has a number of problems:

First, the operators resulted from GIE are in general non-local. Non-local operators do
not usually have a clear physical meaning in general gauges, although they usually do in the
fixed gauge. It is also difficult to perform calculations which are most practically done in
the fixed gauge. In fact, all GIE of partonic operators cannot be calculated in lattice QCD
because they involve intrinsically the real time which becomes imaginary upon the Wick
rotation. This, for example, is the case for the total gluon helicity ∆G =

∫
dx∆g(x).

Second, GIE operators do not transform simply under Lorentz transformations. While
local gauge-invariant operators often have simple classifications in terms of representations
of the Lorentz group, non-local operators involve geometrical lines as gauge links which do
not have simple Lorentz transformation properties. Many gauge conditions are not Lorentz-
covariant.

Third, there are (infinite) many non-local operators that have the same quantum numbers.
For instance, one can merely change the path of a gauge link to get a new operator. All of
these operators can mix under scale evolution. Therefore scale-mixing calculations become
intractable [27].
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Finally, GIE operators are in general unmeasurable. So far, the only example is offered
in high-energy scattering in which certain partonic GIE operators may be measured. For
GIE operators in Coulomb gauge, to which we will turn to in the next section, there is no
known physical measurement for any of them.

For the transverse-momentum dependent factorization, many of the so-called factoriza-
tion formulae are intrinsically gauge dependent. There are contributions of the same order
considered that have been neglected, for instance, contributions from additional transversely
polarized gluons. Here gauge dependence is a signal that there are legitimate contributions
that have been left out. Thus one makes little gain by claiming the result is gauge invariant
through GIE.

IV. GAUGE-INVARIANT EXTENSION OF COULOMB GAUGE

Coulomb gauge is a natural gauge choice in atomic physics, which as we discussed in
Sec. II preserves the power counting in non-relativistic effective theory. In this section,
one considers GIE of the Coulomb gauge, i.e. extending a Coulomb gauge result gauge-
invariantly to other gauges. For a natural gauge-invariant quantity, this of course does
not generate anything new. However, if one believes that the Coulomb gauge potential
Aµ

c is special, any operator made from it can be made gauge-invariant through GIE. As
we shall see, this formalism is just what Chen et al has been proposed as a new “gauge-
invariant” formulation [6, 7]. Being intrinsically non-relativistic, however, Coulomb gauge
is not a natural gauge choice for describing the nucleon structure as quarks and gluons are
relativistic particles.

In this section, we will first define the GIE of the Coulomb gauge. Then we argue that
Chen et al’s proposal is just the same. We show that the so-called gauge-invariant anomalous
dimension of the gluon spin operator calculated in Ref. [9] is in fact corresponding to GIE
of the gluon spin in the light-cone gauge. Finally, the last subsection, we discuss why the
spin and orbital angular momentum separation seems possible in optics.

A. Coulomb gauge extension

Let us consider how to make GIE of the Coulomb gauge. For simplicity, we consider
QED only and use a subscript c to denote quantities in this gauge. The gauge condition is

∇⃗ · A⃗c = 0 , (30)

and A0
c becomes a non-dynamical variable satisfying constraint

∇2A0
c = −∇⃗ · E⃗ = −ρ . (31)

Let us consider any Coulomb-gauge operator Oc as a function of Aµ
c . Its matrix element

evaluated in the Coulomb gauge wave functions are ⟨ψc|Oc|ϕc⟩. Any such operator has a
GIE O ≡ Oc(A

µ
c ) by replacing every Aµ

c in it by

Aµ
c =

1

∇2
∂iFiµ . (32)

which depends on the gauge-invariant field Fµν . O is now manifestly gauge-invariant as Aµ

only appears in the field strength tensor. If we now specialize O in any gauge by letting
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Aµ satisfying a new gauge condition g, calling it Og, its matrix element is then the same as
that in Coulomb gauge.

⟨ψg|Og|ϕg⟩ ≡ ⟨ψc|Oc|ϕc⟩ . (33)

Note that the states |ψg⟩ and |ϕg⟩ are correspondingly obtained in the same gauge g. In
this sense, any operator in Coulomb gauge Oc is “gauge-invariant” through O, although it
is generally non-local in terms of the non-gauge-fixed potential Aµ.

B. Chen et al’s proposal

Chen et al. claim to have found a way to describe the spin of a gauge particle through a
new formulation of gauge symmetry [6]. The first step in their theory is to decompose the
gauge potential Aµ into two parts.

Aµ = Aµ
pure + Aµ

phys . (34)

The part Aµ
pure carries all the gauge degrees of freedom and hence has no physical conse-

quence. The other part is called “physical” because it is invariant under gauge transforma-
tions. In their choice, they demand A⃗phys to satisfy the divergence-free condition

∇⃗ · A⃗phys = 0 , (35)

whereas A⃗pure to satisfy the curl-free condition

∇⃗ × A⃗pure = 0 . (36)

Under gauge transformation, one has

A⃗pure → A⃗′
pure = A⃗pure +∇χ; A⃗phys → A⃗′

phys = A⃗phys . (37)

Therefore, one can construct gauge-invariant observables using A⃗phys, including for example,

the gluon spin density, E⃗ × A⃗phys.
It is easy to see that this proposal is the same as the GIE of the Coulomb gauge. If one

is to make a calculation, the simplest way is to choose,

A⃗pure = ∇⃗ 1

∇2
∇⃗ · A⃗ = 0 . (38)

which is the same as the Coulomb gauge condition, ∇⃗ · A⃗ = 0. Then, A⃗phys is the physical

part of Aµ in the Coulomb gauge which also satisfies the condition ∇⃗ · A⃗phys = 0. The QED

lagrangian contains only A⃗phys, and all calculations proceed in the exactly the same way as
in the Coulomb gauge, and all results are naturally the same as those in that gauge. In
particular, the matrix element E⃗× A⃗phys is the same as E⃗× A⃗ calculated in Coulomb gauge.

The procedure that Chen et al. proposed is to ensure calculations in any gauge involving
A⃗phys = A⃗ − ∇⃗ 1

∇⃗2
∇⃗ · A⃗ yield the same result, as that in the Coulomb gauge. This is the

significance of “gauge invariance” associated with the matrix element such as E⃗ × A⃗phys. In
fact, the propagator ⟨0|TAµ

physA
ν
phys|0⟩, considered as gauge-invariant and physical, computed

in any other gauge will yield the Coulomb gauge result,

⟨0|TAµ
physA

ν
phys|0⟩ =

i

k2 + iϵ

(
−gµν − kµkν

((k · η)2 − k2)
+

(k · η)(kµην + kνηµ)

((k · η)2 − k2)

)
, (39)
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where ηµ is a temporal vector η = (1, 0, 0, 0). This confirms the conclusion that Chen et
al.’s approach is the same as GIE of the Coulomb gauge.

However, the above approach is not really gauge-invariant in the textbook sense [28, 29].
While the Coulomb gauge has been very useful for atomic physics, there is no natural place
for it in QCD.

C. Gauge-invariance of the gluon spin operator?

Following the work by Chen et al., Wakamatsu [8] proposed his gauge- and frame-
independent decomposition of the nucleon spin, and showed that the evolution of the gluon
spin in this decomposition is gauge invariant [9]. What actually Wakamatsu did was instead
of making GIE of the Coulomb gauge, he made GIE of the light-cone gauge. Therefore,
his anomalous dimension result has to coincide with the light-cone gauge calculation of the
gluon spin operator, and this is exactly what he found. Thus his calculation does not at all
support that the gluon spin is gauge invariant.

The first step in Wakamatsu’s work is also to decompose the gauge field Aµ into Aµ
pure and

Aµ
phys. In the paper [9], Aµ

phys is defined by imposing the light-cone condition n · Aphys = 0,

where n2 = 0. The propagator ⟨0|T [Aµ
physA

ν
phys]|0⟩ computed in any gauge just yields the

light-cone result:

⟨0|T [Aa,µ
phys(x)A

b,ν
phys(y)]|0⟩ =

∫
d4k

(2π)4
eik·(x−y)

(
−iδab

k2 + iϵ

)(
gµν − nµkν + nνkµ

n · k

)
(40)

The gluon spin operator is constructed from Aµ
phys:

M+12
g−spin = 2Tr[F+1A2

phys − F+2A1
phys] . (41)

This of course is the same spin operator as in the light-cone gauge, which can be make
gauge invariant by the procedure discussed in the previous section. Once this operator is
generalized to the other gauges, Wakamatsu calculated the one-loop anomalous dimension
in Feynman gauge, which turned out to be the same as that obtained within the light-cone
gauge by Hoodbhoy et. al [17]. This result is hardly novel from the GIE point of view.

The GIE of the gluon spin operator from the light-cone gauge is realized by choosing

Aµ
phys(ξ) =

∫ ξ−

dη− L[ξ−,η−] F
+µ(η−, ξ⊥) L[η−,ξ−] , (42)

where L are light-cone gauge links. In this sense, the gluon spin operator constructed in
Eq. (41) is gauge invariant, and its matrix elements in any other gauge should be just the
same as they are in the light-cone gauge. This is also true for its anomalous dimension.
We have verified our conclusion by explicit calculations in several choices of gauges. At the

lowest order of Aµ
phys, we have calculated ∆γ

(0)
Gq at one-loop level in general covariant and

non-covariant gauges, and all the additional integrals with respect to the Feynman gauge
result canceled exactly among themselves. Therefore, Wakamatsu’s result in Feynman gauge
cannot be any thing other than that in the light-cone gauge.
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D. Photon spin and orbital angular momentum in atomic physics

It has often been claimed that the photon spin and orbital angular momenta in QED can
be separately defined and measured, and therefore they must be separately gauge invariant.
This has served as another important motivation to look for gauge-invariant definition of
the gluon spin. In this subsection, we discuss the examples in optics, pointing out that this
is possible only for optical modes with fixed frequency.

We first recall a bit of history about photon’s angular momentum. For a circularly polar-
ized plane wave, R. Beth [30] was the first one who measured the spin angular momentum
of a circularly polarized light by measuring the torque exerted on the quartz wave plate it
passed through. As we explained above, this is just the helicity and is gauge invariant in
theory. In 1992, L. Allen et al. pointed out that Laguerre-Gaussian laser modes also have a
well-defined orbital angular momentum [31]. Based on this, several experiments [32–34] have
been set up to observe and measure the orbital angular momentum of a Laguerre-Gaussian
photon.

For radiation field with e−iωt time-dependence, using the Maxwell equation

B⃗ = − i

ω
∇× E⃗ , (43)

one always has the gauge invariant decomposition

J⃗ =
1

2

∫
d3ξ [ξ⃗ × (E⃗∗ × B⃗ + E⃗ × B⃗∗)]

= −iϵ0
ω

∫
d3ξ[E⃗∗

i (ξ⃗ ×∇)E⃗i + E⃗∗ × E⃗] . (44)

The two terms may be identified as the orbital and spin angular momentum respectively and
are separately gauge invariant. In particular, this is true for photon electric and magnetic
multipoles which are often used in transitions between atomic or nuclear states. The photon
orbital angular momentum can be defined without referencing to the gauge potential at
all [22].

It can be easily checked from the above equation that the spin equals ∓1 for left-handed
or right-handed circularly polarized light, and 0 for linearly polarized light. In paraxial
approximation, a Laguerre-Gaussian mode with azimuthal angular dependence of exp(ilϕ)
is an eigen-mode of the operator Lz = −i∂/∂ϕ, and carries orbital angular momentum l~. It
is remarkable that the experimenters are able to find way to detect the effects of the orbital
angular momentum alone [32–34].

Clearly, the above procedure only applies for a specific type of radiation field. In the
case of the QCD, the gluons in the nucleon cannot be said to be this type. In particular,
they are off-shell and do not satisfy the on-shell equations of motion. The best one can
do is to go the IMF where the gluons appear as on-shell radiation, then the gluon helicity
and orbital angular momentum could be defined and measured “naturally” in the light-cone
gauge. Thus we are back to the discussions made in the previous section.

V. CONCLUSION

This paper examines the constraints of gauge invariance on physical observables in a gauge
theory. We advocate the standard textbook view that the naturally-gauge-invariant (local)
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operators must be manifestly invariant under gauge transformations. Thus, the spin of
gauge particles, canonical momentum, and canonical OAM are not strictly-speaking gauge-
invariant. Only in special context, it makes sense to talk about them. These special cases
arises 1) in non-relativistic quantum systems such as atoms where the Coulomb gauge is a
natural choice, 2) in radiation fields where the time variation is in harmonic oscillation (such
as the electromagnetic multipoles and Laguerre-Gaussian laser modes), and 3) in high-energy
hadron scattering in which the gauge partons appear to have two physical polarizations and
be on-shell. In the late case, the simple physics in the IMF and light-cone gauge cannot
be extended to that of the bound state because the same quantity does not have a simple
gauge-invariant interpretation in the rest frame of the nucleon. In fact, there is no gauge-
invariant notion of the gluon spin contribution to the spin of the nucleon. The IMF frame
result can only be translated into the physics of bound state only in light-cone gauge.

Of course, high-energy scattering has provided great tools to learn about parton physics.
Thus, it is possible to probe, for example, the canonical momentum and OAM of the partons
in the IMF and light-cone gauge [25, 26]. However, they cannot be taken as gauge-invariant
properties of bound states, contrary to many assertions made in the literature so far. Also
many of the TMD factorization theorems are practically model assumptions which must be
taken with caution [14].

Thus, the efforts of trying to generalize the gauge symmetry from a fixed gauge calculation
is of limited use. In particular, generalizing the Coulomb gauge results as “gauge-invariant”
in the case of QCD is neither physically useful nor experimentally relevant [28, 29].
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FG02-93ER-40762 and a grant (No. 11DZ2260700) from the Office of Science and Technol-
ogy in Shanghai Municipal Government.
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