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• Hidden flavour - Strangeness in the nucleon

• Strange quark contribution to nucleon mass (sigma term)

• Feynman-Hellman

• Matrix elements

• Impact for Dark Matter searches

• Other strangeness contributions

• Spin

• Charge and Magnetic form factors

• Semi-Leptonic decays of strange hadrons

• CKM matrix element |Vus|

Lecture 5



Strangeness Content of the Nucleon
& Dark Matter Searches

(See plenary talk by R.Young at Lattice 2012)



Strangeness and Dark Matter
• We have no idea what makes up 

most of the mass of the universe

• Strong evidence that Dark 
Matter is made up of weakly-
interacting massive 
particles:”WIMPs”

• An example candidate is 
provided if supersymmetry is 
not maximally broken in nature

• Direct detection of such 
particles extremely challenging

Dark Energy

Dark Matter

Ordinary Matter



Direct Detection
• Giant underground detectors + a lot of patience

• Cross sections are small, but how small?

• Direct experimental searches depend on WIMP-
nucleon cross sections
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M ⇠
X

q

CqhN |mq q̄q|Ni

• Scattering amplitude

Nucleon “sigma” terms

{



Expected cross sections for neutralino in CMSSM

Significant uncertainty coming from nucleon “sigma” terms

�q = mqhN |q̄q|Ni
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Direct Detection



Strangeness and Dark Matter
•                          can be obtained from         scattering

•      then determined from          and an estimate for the non-singlet

•                   poorly determined

• Even with perfect

•                   Lattice QCD 

• Two options:

• Determine                     directly

• Feynman-Hellmann 

⌃⇡N = �u+d ⇡N

�s ⌃⇡N

�0 ⌘ mlhN |ūu+ d̄d� 2s̄s|Ni
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ms
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Sigma Terms on the Lattice
• Direct determination proceeds by our established methods of computing lattice 

three-point functions of the operator

• Disconnected diagram notoriously difficult

• Scalar current couples to the vacuum              requires vacuum subtraction 

O = q̄q

u,d

s

Rdis(tf , t) = hTr(M�11)i � hC2(tf )Tr(M�11)i
hC2(tf )i



Sigma Terms on the Lattice
• However progress has been made in the computation of the required all-to-all 

propagators via stochastic noise sources. see e.g.

• For the disconnected strangeness sigma term

hep-lat/0505023
0910.3970
1204.0685 3
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FIG. 2. Dependence of Rdis on tf for smeared-smeared (SS)
and smeared-point (SP) two-point functions, together with
the fit result.

where the termRcon(tf , t) = C3pt(tf , t)/C2pt(tf) only con-
tributes for q ∈ {u, d}. For the disconnected part we fix
t = 4a ≈ 0.29 fm and allow tf to vary. Employing sink
and source smearing (see below), we find the asymptotic
limit to be effectively reached for tf ≥ 5a and compute
the matrix elements by fitting the above ratios to con-
stants where we use tf ≥ 6a ≈ 0.44 fm values. As an
example, in Fig. 2 we display the disconnected ratio for
strange valence and current quark masses as a function
of tf for smeared-smeared three- over two-point functions
for 40364 lattices, together with this fit result. In addi-
tion we display the corresponding smeared-point ratio
that converges towards the same value.
Based on Ref. [23] we improve the overlap of our nu-

cleon creation operator with the ground state by applying
Wuppertal-smearing [24]

φ(n)x =
1

1 + 6δ



φ(n−1)
x + δ

±3
∑

j=±1

Ux,jφ
(n−1)
x+a̂



 (14)

to quark fields φ, where we set δ = 0.25 and use 400
iterations. We replace the spatial links Ux,j above by
APE-smeared [25] links

U (n)
x,i = PSU(3)



αU (n−1)
x,i +

∑

|j| "=i

U (n−1)
x,j U (n−1)

x+a̂,iU
(n−1)†
x+aı̂,j



 ,

(15)
where i ∈ {1, 2, 3}, j ∈ {±1,±2,±3}. PSU(3) denotes a
projection operator into the SU(3) group and the sum is
over the four spatial “staples”, surrounding Ux,i. We em-
ploy 25 such gauge covariant smearing iterations and use
the weight factor α = 2.5. For the projector we somewhat
deviate from Ref. [23] and maximize ReTr [A†PSU(3)(A)],
iterating over SU(2) subgroups. The connected part, for
which the statistical accuracy is less of an issue, is ob-
tained with a less effective smearing at the larger, fixed
value tf = 15a, varying t.

We stochastically estimate Trt M−1. For this pur-
pose we employ N complex Z2 noise vectors, |ηi〉t,
i = 1, . . . , N , whose spacetime ⊗ spin ⊗ colour com-
ponents eiφ carry uncorrelated random phases φ ∈
{±π/4,±3π/4} at the time t and are set to zero else-
where, to reduce the noise (partitioning [26]).
Solving the linear systems

M |si〉t = |ηi〉t (16)

for |si〉t we can then substitute,

TrtM
−1
E =

1

N

N
∑

i

t〈ηi|si〉t = TrtM
−1 +O

(

1√
N

)

.

(17)
The inner product is only taken over three-space, spin
and colour indices. In the case of the scalar matrix el-
ement it is relatively easy to push the stochastic error
below the level of the inherent error from fluctuations
between gauge configurations1 [27]. Therefore, here we
do not need to employ the Truncated Solver Method
(TSM) [27] and not to exploit the hopping parameter
expansion. Instead, to reduce the dominant gauge er-
ror, we compute the nucleon two-point functions for four
equidistant source times on each gauge configuration.
In addition we exploit backwardly propagating nucle-
ons, replacing the positive parity projector 1

2 (1+ γ4) by
1
2 (1 − γ4) within the nucleon two-point function, C2pt.
Consequently, the noise vectors are seeded on 8 time
slices simultaneously, reducing the degree of time par-
titioning. We find this not to have any adverse effect on
the stochastic error. In addition to the 48 (4 timeslices
times 4 spinor components times 3 colours) point-to-all
sources necessary to compute the two-point functions we
solve for N = 50 noise vectors per configuration and cur-
rent quark mass.

III. RENORMALIZATION

In the continuum, for light quark flavours q, the σq-
terms are invariant under renormalization group trans-
formations. However, Wilson fermions explicitly break
chiral symmetry and this enables mixing not only with
gluonic contributions but also with other quark flavours.
Moreover, a consistent O(a) improvement of the quark
scalar matrix elements requires the inclusion of the glu-
onic operator aGG. We have not measured this as yet.
Therefore we will neither include any O(a) improvement
of the renormalization constants nor of the scalar cur-
rent. However, we will account for the mixing between
quark flavours.
We follow the procedure outlined in Ref. [28], see also

Sec. 6 of Ref. [29]. The same result can be obtained

1 Note that both error sources will scale in proportion to 1/
√
nconf .

QCDSF:1111.1600

Rdis(tf , t) = hTr(M�11)i � hC2(tf )Tr(M�11)i
hC2(tf )i

�⇡N = 38± 12 MeV

�s = 12+23
�16 MeV

includes connected piece

http://arxiv.org/abs/arXiv:0910.3970
http://arxiv.org/abs/arXiv:0910.3970


Sigma Terms on the Lattice
• An alternative, and to date more popular, method is to use the Feynman-Hellmann 

relation

• Differentiate the quark mass dependence

• Requires substantial variation of both light and strange quark masses

• Depends on the form used to fit the quark mass dependence of the baryon 
mass (Chiral Perturbation Theory)   

�q = hN |mq q̄q|Ni = mq
@MN

@mq



Sigma Terms on the Lattice
• Example, Shanahan et al. [1205.5365] fit to PACS-CS data

2

phenomenological values; D + F = gA = 1.27, F = 2

3

D,
C = �2D, f = 0.0871 GeV, and � = 0.292 GeV. Within
the framework of FRR, we introduce a mass scale ⇤,
through a regulator u(k). ⇤ is related to the scale beyond
which a formal expansion in powers of the Goldstone bo-
son masses breaks down. In practice, ⇤ is chosen by fit-
ting to the lattice data itself. For further discussions of
the FRR regularization scheme, we refer to Refs. [22–26].
To provide an estimate of the model-dependent uncer-
tainty in our result, we consider a variety of forms of the
regulator u(k), namely monopole, dipole, and Gaussian,
as well as a sharp cuto↵. To further estimate systematic
uncertainties, we allow f , the meson decay constant in
the chiral limit, the baryon-baryon-meson coupling con-
stants F and C, and � to vary by ±10% from the central
values given above; see Ref. [27] for details. The e↵ect of
these variations are included in the final quoted errors.

The PACS-CS results have been corrected for small,
model-independent, finite volume e↵ects before fitting.
These finite volume corrections were evaluated by con-
sidering the leading one-loop results of chiral EFT [8, 28–
30]. We note that the largest shift was �0.022 ±
0.002 GeV for the nucleon at the lightest pion mass.

The fit to the PACS-CS baryon octet data is shown in
Figure 1. We find an optimal dipole regularization scale
of ⇤ = 0.9± 0.1 GeV, in close agreement with the value
deduced from an analysis of nucleon magnetic moment
data [31] and, from the phenomenological point of view,
remarkably close to the value preferred from comparison
of the nucleon’s axial and induced pseudoscalar form fac-
tors [32]. The minimum �2

dof

is 0.41 (6.1/(20-5)) for the
dipole, and varies between 0.40 and 0.42 for the other
regulators. This value is somewhat lower than unity, as
correlations between the lattice data cannot be accounted
for without access to the original data.

Clearly, the fit is very satisfactory over the entire range
of quark masses explored in the simulations. Further-
more, the masses of the octet baryons agree remarkably
with experiment at the physical point. A comparison
of the extrapolated baryon masses with the best experi-
mental values is given in Table I. The first error quoted
is statistical and includes the correlated uncertainty of
all of the fit parameters including the regulator mass ⇤,
while the second is an estimate of model-dependence.
This includes the full variation over dipole, monopole,
sharp cuto↵ and Gaussian regulator forms, as well as ac-
counting for the variation of the phenomenologically-set
parameters F , C and � described earlier.

As we fit baryon mass functions to lattice data over
a range of pseudoscalar masses significantly larger than
the physical values, it is prudent to check the consistency
of our results as the analysis moves outside the power-
counting regime (PCR), where higher order terms may
become significant. By performing our fit to progressively
fewer data points, that is, by dropping the heaviest mass
points, we test the scheme dependence of our evaluation.

*

*
*
*
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FIG. 1. Fit to the PACS-CS baryon octet data. Error bands
shown are purely statistical, and incorporate correlated un-
certainties between all fit parameters. Note that the data
shown has been corrected for finite volume and the simula-
tion strange quark mass, which was somewhat larger than the
physical value. The green stars show experimental values.

The results are consistent, and largely independent of
the truncation of the data. This can be seen clearly in
Figure 2, which shows the variation of the dimensionless
baryon sigma terms as progressively fewer data points are
used for the fit to the octet masses. The points shown
correspond to an evaluation with a dipole regulator, and
error bars are purely statistical.

B Mass (GeV) Experimental �Bl �Bs

N 0.959(24)(9) 0.939 0.047(6)(5) 0.022(6)(0)
⇤ 1.129(15)(6) 1.116 0.026(3)(2) 0.141(8)(1)
⌃ 1.188(11)(6) 1.193 0.020(2)(2) 0.172(8)(1)
⌅ 1.325(6)(2) 1.318 0.0089(7)(4) 0.239(8)(1)

TABLE I. Extracted masses and sigma terms for the physical
baryons. The first uncertainty quoted is statistical, while the
second results from the variation of various chiral parameters
and the form of the UV regulator as described in the text.
The experimental masses are shown for comparison.

To further test our claim that the fitted mass functions
accurately describe the variation of the baryon masses
with quark mass, we compare our extrapolation with in-
dependent lattice data along a very di↵erent trajectory in
the ml �ms plane, as compared to the fit domain. Most
lattice simulations, including that of the PACS-CS Col-
laboration, hold the simulation strange quark mass fixed
near the physical value, and progressively lower the light
quark mass to approach the physical point. However, the
UKQCD-QCDSF Collaboration has recently presented
an alternative method of tuning the quark masses, in
which the singlet mass (2m2

K + m2

⇡) is held fixed [33].
This procedure constrains the simulation kaon mass to

Extract slope

�⇡N = 45± 6 MeV

�s = 21± 6 MeV



Dramatically improves cross section estimates

Strangeness and Dark Matter
(Plenary talk by R.Young at Lattice 2012)

��

��

��

��

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

JLQCD 2008

JLQCD 2010

QCDSF 2011

Young & Thomas 2009

Toussaint & Freeman 2009

Dürr et al. 2011

QCDSF⇥UKQCD 2011

Freeman & Toussaint 2012

Shanahan et al. 2012

Engelhardt 2012 ��Prelim⇥
RBC⇤UKQCD 2012 ��Prelim⇥
⇤QCD 2012 ��Prelim⇥

⌅s �MeV⇥

Sigma term estimates

Nf=2

Nf>2

⇤⇤

⇤⇤

��

��

��

��

��

��

��

��

��

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

0 20 40 60 80 100

0 20 40 60 80 100

Fukugita et al. 1995
Dong et al. 1996
SESAM 1998
Leinweber et al. 2000
Leinweber et al. 2003
Procura et al. 2003
Procura et al. 2006
ETM 2008
JLQCD 2008
QCDSF �Direct⇥ 2011
QCDSF �Spectrum⇥ 2012 ��Prelim⇥
Young & Thomas 2009
PACS⇥CS 2009
Dürr et al. 2011
QCDSF⇥UKQCD 2011
Shanahan et al. 2012

⇤l �MeV⇥

Nf=0

Nf=2

Nf>2

Conservative eye-ball best estimates

��

��

��

��

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

JLQCD 2008

JLQCD 2010

QCDSF 2011

Young & Thomas 2009

Toussaint & Freeman 2009

Dürr et al. 2011

QCDSF⇥UKQCD 2011

Freeman & Toussaint 2012

Shanahan et al. 2012

Engelhardt 2012 ��Prelim⇥
RBC⇤UKQCD 2012 ��Prelim⇥
⇤QCD 2012 ��Prelim⇥

⌅s �MeV⇥

Sigma term estimates

Nf=2

Nf>2

⇤⇤

⇤⇤

��

��

��

��

��

��

��

��

��

⇥⇥

⇥⇥

⇥⇥

⇥⇥

⇥⇥

0 20 40 60 80 100

0 20 40 60 80 100

Fukugita et al. 1995
Dong et al. 1996
SESAM 1998
Leinweber et al. 2000
Leinweber et al. 2003
Procura et al. 2003
Procura et al. 2006
ETM 2008
JLQCD 2008
QCDSF �Direct⇥ 2011
QCDSF �Spectrum⇥ 2012 ��Prelim⇥
Young & Thomas 2009
PACS⇥CS 2009
Dürr et al. 2011
QCDSF⇥UKQCD 2011
Shanahan et al. 2012

⇤l �MeV⇥

Nf=0

Nf=2

Nf>2

Conservative eye-ball best estimates

Ross Young’s Lattice Estimates:
20 MeV . �s . 60 MeV30 MeV . �l . 60 MeV



Strangeness in the Nucleon
• Other studies of strange quark contributions to nucleon structure

•                                   QCDSF: 1112.3354,    

•                               QCD: 1203.6388 

•                  CSSM: hep-lat/0406003, 
•            hep-lat/0601025

[Not an exhaustive list]
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Combined Analysis

• Combined constraints 

on current knowledge of 

strangeness content.

• Strangeness is small!

• 95% confidence:

< 5% charge radius

< 6% magnetic moment

• In support of theory 

estimate
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SAMPLE

HAPPEX-He4

HAPPEX-H

PVA4

G0

Latest JLab 
Experimental bounds

�s = �0.020(10)(4)

R. Young



Semi-Leptonic Strange Hadron Decays
K+ ! ⇡0l+⌫, ⌅0 ! ⌃+l�⌫, ⌃� ! n l�⌫



Matter-Antimatter Asymmetry



Matter-Antimatter Asymmetry

Why did matter dominate?



Matter-Antimatter Asymmetry

Why did matter dominate? CP Violation?



Charge:

Parity:

CP:

q q̄

q q

e�L

e�L

e�Lq̄q e+
R

e�R

e+
L

CP Violation

• The Standard Model contains two ways to break CP symmetry

• In the QCD Lagrangian (strong) - not observed

• Via the weak force - observed, but can only account for a small portion of CP-
violation



• Cabibbo (1963) proposed a theory of the weak current in terms of a single mixing angle 
θc to preserve universality of the weak interaction.

• Explains the difference between the amplitudes of ∆S=0 and ∆S=1 transitions

• Led to a detailed description of semileptonic decays of mesons and baryons

• After the introduction of quarks (1964) the weak current is then written as

• This interaction is described by a unitary 2x2 quark mixing matrix:

• Has only one free parameter: Cabibbo angle θc with tanθc = Vus/Vud 

�
Vud Vus

Vcd Vcs

⇥

Cabibbo Kobayashi Maskawa Matrix

J� = cos �C ū��(1 + �5)d + sin �C ū��(1 + �5)s



CKM Matrix
• A 2x2 matrix can always be reduced to a form with real elements (no phase) 

• Couldn’t accommodate experimentally observed CP violation in 

• Neutral Kaon decays (1964)       [1980 Nobel Prize]

• Kobayashi & Maskawa (1973) proposed a third generation of quarks since a unitary 
3x3 matrix has: [2008 Nobel Prize]

• 3 real parameters (mixing angles)

• 1 imaginary (CP-violating) parameter (phase)

• Discovery of b-quark (1976) led to a search for the t-quark later discovered at 
Fermilab (1995)

VCKM =

�

⇤
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⇥

⌅



• The CKM matrix elements are fundamental parameters of the SM, so their precise 
determination is important for evaluating the solidity of the SM

• The most sensitive test of the unitarity of the CKM matrix is provided by the relation

• An important goal of flavour physics is to over constrain the CKM elements

• Processes dominated by loop contributions in the SM are sensitive to new physics, 
and can be used to extract CKM elements only if the SM is assumed. 

• Search deviations from unitarity                    search for physics beyond the SM

|Vud|2 + |Vus|2 + |Vub|2 = 1� �

CKM Matrix



Unitarity Triangle

(0, 0) (0, 1)

(⇥̄, �̄)

� = ⇥2

� = ⇥3 � = ⇥1

����
VudV �

ub

VcdV �
cb

����

����
VtdV �

tb

VcdV �
cb

����

VudV
�
ub + VcdV

�
cb + VtdV

�
tb = 0

V =

�

⇤
1� ⇥2/2 ⇥ A⇥3(⇤� i�)
�⇥ 1� ⇥2/2 A⇥2

A⇥3(1� ⇤� i�) �A⇥2 1

⇥

⌅

One common parameterisation (Wolfenstein):

Unitarity:



Unitarity Triangle



Unitarity Triangle



CKM Matrix

PDG (2010):

|Vud| = 0.97425(22)
|Vus| = 0.2252(9)
|Vub| = 3.89(44)� 10�3

|Vcd| = 0.230(11)
|Vcs| = 1.023(36)
|Vcb| = 40.6(1.3)� 10�3

|Vtd| = 8.4(6)� 10�3

|Vts| = 38.7(2.1)� 10�3

|Vtb| = 0.88(7)



CKM Matrix
This talkLattice Input

|Vus|

|Vub|

|Vcd|

|Vcs|

|Vtd| & |Vts|

K+ � ⇥0l+�, f�/fK , �0 � ⇥+l��, ⇥� � n l��

D � Kl�, D � ⇥l�

D � Kl�, D � ⇥l�, fDs

B � ⇥l�

fBd

⇥
B̂Bd , � = (fBs

�
BBs)/(fBd

�
BBd)



Kl3

•                                   decay leads to determination of

• Require precise theoretical determination of
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Motivation	

• Until recently, standard result from Leutwyler & Roos (1984) 

• Studied by several lattice groups

• Tension between lattice and ChPT communities

• Situation summarised by FlaviaNet [arXiv:1011.4408] fK�
+ (0) = 0.956(8)
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f+(0)

RBC/UKQCD 10 [137] 2+1 A • ! " 0.9599(34)(+31
−47)(14)

RBC/UKQCD 07 [138] 2+1 A • ! " 0.9644(33)(34)(14)

ETM 09A [139] 2 A • • • 0.9560(57)(62)
QCDSF 07 [140] 2 C ! ! " 0.9647(15)stat
RBC 06 [141] 2 A ! ! " 0.968(9)(6)
JLQCD 05 [142] 2 C ! ! " 0.967(6), 0.952(6)

Table 5: Colour code for the data on f+(0).

The matrix element |Vus| can be measured in τ decays [127–130]. Separating the inclusive
decay τ → hadrons + ν into non-strange and strange final states, Gamiz et al. [131] obtain

|Vus| = 0.2165(26)exp(5)th . (36)

Maltman et al. [132] arrive at very similar values.
As recently pointed out by Maltman [129], the theoretical uncertainties of the analysis

which underlies the result (36) can be reduced by invoking the experimental information about
the spectral function of the electromagnetic current, but the experimental uncertainties then
play a more important role. Applying this method, the outcome for |Vus| reads [133]

|Vus| = 0.2208(39) . (37)

In principle, τ decay offers a clean measurement of |Vus|, but a number of open issues
yet remain to be clarified. In particular, the measured exclusive decay rates for τ → πν and
τ → Kν are below the Standard Model predictions, which determine these rates in terms
of the same matrix elements |Vudfπ| and |VusfK | that govern the leptonic decays π → µν
and K → µν (violation of τ/µ universality). On the other hand, the value obtained for
|VusfK |/|Vudfπ| from the ratio of the tau decay rates is perfectly consistent with the one
from the leptonic π and K-decays quoted in (34), but this does not shed any light on the
value of |Vus|. It is important to pursue the measurement of modes that have previously been
studied only with low statistics (especially the large mode K0π0π−), as well as those of higher
multiplicity (final states with more than two pions, for instance). The recent developments
on the theoretical side [134–136] also need to be pursued. The most interesting possibility
is that τ decay involves new physics, but more work is required before τ decay becomes a
competitive source of information about the CKM matrix elements.

4.2 Lattice results for f+(0) and fK/fπ

The traditional way of determining |Vus| relies on using theory for the value of f+(0), invoking
the Ademollo-Gatto theorem [143]. Since this theorem only holds to leading order of the

30

�f = �0.016(8)
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Lattice Techniques
•                       Matrix element

• Three-point function

K � �

⇥�(p⇥)|Vµ|K(p)⇤ = (pµ + p⇥µ)f+(q2) + (pµ � p⇥µ)f�(q2), q2 = (p⇥ � p)2

CPQ
µ (t⇥, t,  p⇥,  p) =

�

 x, y

e�i p�( y� x)e�i p x⇥0|OQ(t⇥)|Q(p⇥)⇤⇥Q(p⇥)|Vµ(t)|P (p)⇤⇥P (p)|O†
P (0)|0⇤

K(p) �(p�)

W-

⌧
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u

u

s



Extraction of Form Factor
• Extract scalar form factor

• at                                          with high precision via

f0(q2) = f+(q2) +
q2

m2
K �m2
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Extracting Form Factors

⇥�(p⇥)|Vµ|K(p)⇤ = (pµ + p⇥µ)f+(q2) + (pµ � p⇥µ)f�(q2), q2 = (p⇥ � p)2

R1, PiPf (�pi, �pf ) = 4
�

EiEf

⇥
CPiPf (t, �pi, �pf ) CPf Pi(t, �pf , �pi)

CPi(tsink, �pi) CPf (tsink, �pf )
,

R3, PiPf (�pi, �pf ) = 4
�

EiEf
CPiPf (t, �pi, �pf )
CPf (tsink, �pf )

⇥
CPi(tsink � t, �pi) CPf (t, �pf ) CPf (tsink, �pf )
CPf (tsink � t, �pf ) CPi(t, �pi) CPi(tsink, �pi)

.

Construct ratios

Form system of equations

Solve for 
f+

K�(0) & f�K�(0)

More generally at any q

K(p) �(p�)
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t
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f0(q
2)

RBC/UKQCD: 0710.5136

f0(q2) =
f0(0)

1� q2/M2pole fit:

m⇡ ⇡ 670MeV



•  

• where

• at the physical masses, f2 = -0.023

Chiral Extrapolation of 
f+(0) = 1 + f2 + �f

HPQ = � 1
64�2f2
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2
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3
2
H�K
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R�f =
�f

(M2
K �M2

�)2
= a + b(M2

K + M2
�) �f = �0.0161(46)

Chiral Extrapolation of f+(0)



Simultaneous Fit
• In an attempt to get as much information as possible out of the lattice data as 

possible, we attempt to fit the q2 and the quark mass dependencies simultaneously

• where A0, A1, M0, and M1 are fit parameters

• Also construct simultaneous fit based on ansatz quadratic in q2 and take difference 
as estimate of systematic error

f0(q2,m2
�,m2

K) =
1 + f2 + (m2

K �m2
�)2(A0 + A1(m2

K + m2
�))

1� q2

(M0+M1(m2
K+m2

�))2

[RBC/UKQCD PRL100, 141601 (2008)]



PRL100, 141601 (2008)

f0(q2,m2
�,m2

K) =
1 + f2 + (m2

K �m2
�)2(A0 + A1(m2

K + m2
�))

1� q2

(M0+M1(m2
K+m2

�))2

f+(0) = 0.9644(33)(34)(14)



�f = �0.0129(33)(34)(14)� fK�
+ (0) = 0.9644(48)

[RBC/UKQCD PRL100, 141601 (2008)]|Vus|

Statistical error after 
extrapolations Systematic error 

from modelling q2 
dependence

Discretisation error

Can we remove this error by using 
twisted boundary conditions?
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0 at no additional cost. This is not the case when using the
noise source technique as for Z4PSs4 and Z4PSs3. We
achieved a similar precision for fKπ

+ (0) at approximately
the same total cost with the Z4PS-source type, where for
each propagator of mass am = amq or am = ams four
spin-colour inversions are necessary [12] for each choice of
the twist angle. We note however that in general the qual-
ity of plateaus is significantly enhanced when using the
stochastic volume source technique.

q2-dependence of the form factor: The data gener-
ated for this paper complements our previous data P4 by
a number of new points for fKπ

0 (q2) in the range 0 ! q2 "
q2
max for two strange quark masses ams = 0.04 (unitary)

and ams = 0.03 (partially quenched). The results are il-
lustrated in the plot in figure 2 by the red/blue right/left-
pointing arrows, respectively. The new data points for
ams = 0.04 nicely agree with both the pole dominance
and polynomial fits (cf. eqn. (13) in [6]) as can be seen in
the following comparison:

results for amq = 0.005, ams = 0.04

fKπ
+ (0)|pole = 0.9774(35) [6] ,

fKπ
+ (0)|polynomial = 0.9749(59) [6] ,

fKπ
+ (0)|thiswork = 0.9757(44) .

In [6] we used the spread fKπ
+ (0)|pole−fKπ

+ (0)|polynomial ≈
0.0024 as an estimate of the systematic due to the phe-
nomenological q2-interpolation. As simulations move closer
to the physical pion mass the value of q2

max = (mK −mπ)2

increases. Therefore the interpolation to q2 = 0, which
crucially depends on the high precision which one is able
to achieve for the form factor at q2

max, will be increasingly
sensitive to the ansatz one makes. One therefore expects
the systematic error due to the interpolation to increase.
We emphasise that the approach advocated here entirely
removes this uncertainty.

Quark mass dependence: Inserting the unitary and
partially quenched kaon mass which we simulated here
together with the parameters in (16) into the phenomeno-
logical ansatz (15) we can predict the form factor that
is to be expected for ams = 0.03 and ams = 0.04 with
amq = 0.005 as illustrated in terms of the blue (dot-
dashed) and red (dashed) curve in figure 2. Both curves are
nicely compatible with the new blue and red data points,
thus confirming that the ansatz parameterises the depen-
dence of the form factor on a partially quenched strange
quark well.

Combining the data sets P4, Z4PSs3 and Z4PSs4
and carrying out the global fit (15) we update the previ-
ous result fKπ

+ (0) = 0.9644(33) → fKπ
+ (0) = 0.9630(34)

(statistical errors only) at the physical point. The result
of the global fit is also illustrated in figure 4 by the solid
black line.

The chiral extrapolation of the lattice data is well con-
strained by the natural hinge-point fKπ

+ (0)|mK=mπ = 1.
As can be seen in figure (4), our data as well as the
global SU(3) fit-ansatz (15) nicely approach this point

Fig. 3. Illustration of the dependence of the fit result (with
the ansatz in eqn. (15)) on the choice of the decay constant.
The horizontal red lines indicate our estimate of the resulting
systematic uncertainty.

for mπ → mK . In contrast, in SU(2) chiral perturba-
tion theory one expands the form factor around vanishing
pion mass at a fixed strange quark mass [9] (in fact, all
strange quark mass dependence resides in the low energy
constants). The limit fKπ

+ (0)|ms=mq = 1 is not naturally
implemented in this expansion. Given our experience with
SU(2) fits to other pion and kaon observables in [28] such
an expansion describes the lattice data reliably only be-
low mπ ≈ 400MeV. In contrast to our study in [28] here
we only have data for two values of the pion mass be-
low this cut-off and extrapolations are therefore not well
constrained. Alternatively one can include data at heavier
pion masses. However, fits of acceptable quality can then
only be obtained after adding an extra term (∝ c4) to the
expression in [9]. Given these considerations we refrain
from presenting fit results based on SU(2) chiral pertur-
bation theory.

Estimates of systematic errors: The new data pre-
sented here confirms the ansatz for the q2-interpolation
for the smallest mass used in ref. [6], i.e. amq = 0.005.
Since q2

max increases as mq decreases, it is at this mass
that q2

max is the largest (and therefore furthest away from
q2 = 0) and hence the interpolation is the least con-
strained. We are therefore confident that the pole ansatz
previously used in fits to our data [6] describes the form
factor data well also for all the other simulation param-
eters where q2

max is closer to the origin. The systematic
error due to the interpolation can be safely removed from
our final result.

As discussed in section 5, a potential source of sys-
tematic error which to our knowledge hasn’t been taken
into account systematically in any previous computation
of fKπ

+ (0) is the choice of the decay constant entering in
the SU(3) NLO prediction for the form factor. Lacking a
precise value of the decay constant in the chiral limit we
repeated the global fit for the three choices f = 100, 115,
131MeV and found for the central values of the form-
factor fKπ

+ (0) = 0.9556, 0.9599, 0.9630, respectively. In
each case the fit was of very good quality. This is quite a
sizeable variation in the central value which is illustrated
in figure 3. We found that the choice of decay constant
particularly changes the slope of fKπ

+ (0) with respect to
m2

π in the region of small pion masses where we do not
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low this cut-off and extrapolations are therefore not well
constrained. Alternatively one can include data at heavier
pion masses. However, fits of acceptable quality can then
only be obtained after adding an extra term (∝ c4) to the
expression in [9]. Given these considerations we refrain
from presenting fit results based on SU(2) chiral pertur-
bation theory.
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sented here confirms the ansatz for the q2-interpolation
for the smallest mass used in ref. [6], i.e. amq = 0.005.
Since q2

max increases as mq decreases, it is at this mass
that q2

max is the largest (and therefore furthest away from
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strained. We are therefore confident that the pole ansatz
previously used in fits to our data [6] describes the form
factor data well also for all the other simulation param-
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into account systematically in any previous computation
of fKπ

+ (0) is the choice of the decay constant entering in
the SU(3) NLO prediction for the form factor. Lacking a
precise value of the decay constant in the chiral limit we
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factor fKπ
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each case the fit was of very good quality. This is quite a
sizeable variation in the central value which is illustrated
in figure 3. We found that the choice of decay constant
particularly changes the slope of fKπ

+ (0) with respect to
m2

π in the region of small pion masses where we do not

• Remove source of systematic error by

• using (partially) twisted boundary conditions and tune to q2=0

2.4 f+
Kπ

(0) and fππ(q2) at Small Momentum Transfers

We wish to compute the scalar form factor for K!3 decays at zero momentum transfer,

f0
Kπ(0). The scalar form factor is defined in terms of f+

Kπ and f−
Kπ by:

f0
Kπ(q2) = f+

Kπ(q2) +
q2

m2
K − m2

π
f−

Kπ(q2), (2.10)

and f0
Kπ(0) = f+

Kπ(0).

Our approach is to use twisted boundary conditions to induce momenta for the pion

and kaon such that q2 = 0. A simple way to do this is to take the pion (kaon) to be at rest

and to tune the momentum of the kaon (pion). We therefore compute the ratios

Rα,Kπ(!pK ,!0) with |!θK | = L
√

(
m2

K+m2
π

2mπ
)2 − m2

K and !θπ = !0

and Rα,Kπ(!0, !pπ) with |!θπ| = L
√

(
m2

K+m2
π

2mK
)2 − m2

π and !θK = !0 ,
(2.11)

where α = 1, 2, 3. The momenta of the mesons are given by !pK = !θK/L and !pπ = !θπ/L

and it can be readily verified that the choices of twisting angles in the two lines of eq.(2.11)

both correspond to q2 = 0.

The required form factor, f0
Kπ(0), can be obtained directly from a linear combination

of the ratios in eq. (2.11):

f0
Kπ(0) =

Rα,Kπ(!pK ,!0)(mK − Eπ) − Rα,Kπ(!0, !pπ)(EK − mπ)

(EK + mπ)(mK − Eπ) − (mK + Eπ)(EK − mπ)
(α = 1, 2, 3) . (2.12)

Here EK (Eπ) is the energy of the kaon (pion) corresponding to the momentum induced

by the twisting angle in the first (second) line of eq.(2.11).

By using the spatial component of the vector current Vk (k = 1, 2 or 3) it is possible to

tune the momenta such that q2 = 0 and qk = 0 so that one obtains the form-factor f+(0)

directly. We find however, that this procedure leads to a significantly larger statistical

error.

The case of the pion’s electromagnetic form factor is simpler since current conservation

implies that f−
ππ(q2) = 0 so that (dropping the redundant superscript +)

〈π+(pf )|Vµ(0)|π+(pi)〉 = fππ(q2) (pi + pf )µ. (2.13)

fππ(q2) can therefore be directly computed from the ratios in eq.(2.8) by inducing the

required momenta for the initial- and final-state pions.

2.5 Comparison with the Conventional Approaches

One aim of this paper is to compare the precision with which we can determine the form

factors using the techniques introduced in the preceding subsection with that obtained

using standard methods. The numerical comparison will be given in section 3, here we

describe what the conventional approaches are.

– 7 –

q2 = (pf � pi)2 =
�

[Ef (⌥pf )� Ei(⌥pi)]2 �
⇤
(⌥pFT,f + ⌥�f/L)� (⌥pFT,i + ⌥�i/L)

⌅2
⇥
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Comparison of determination of

6 RBC and UKQCD Collaborations: K → π form factors from lattice QCD

0 at no additional cost. This is not the case when using the
noise source technique as for Z4PSs4 and Z4PSs3. We
achieved a similar precision for fKπ

+ (0) at approximately
the same total cost with the Z4PS-source type, where for
each propagator of mass am = amq or am = ams four
spin-colour inversions are necessary [12] for each choice of
the twist angle. We note however that in general the qual-
ity of plateaus is significantly enhanced when using the
stochastic volume source technique.

q2-dependence of the form factor: The data gener-
ated for this paper complements our previous data P4 by
a number of new points for fKπ

0 (q2) in the range 0 ! q2 "
q2
max for two strange quark masses ams = 0.04 (unitary)

and ams = 0.03 (partially quenched). The results are il-
lustrated in the plot in figure 2 by the red/blue right/left-
pointing arrows, respectively. The new data points for
ams = 0.04 nicely agree with both the pole dominance
and polynomial fits (cf. eqn. (13) in [6]) as can be seen in
the following comparison:

results for amq = 0.005, ams = 0.04

fKπ
+ (0)|pole = 0.9774(35) [6] ,

fKπ
+ (0)|polynomial = 0.9749(59) [6] ,

fKπ
+ (0)|thiswork = 0.9757(44) .

In [6] we used the spread fKπ
+ (0)|pole−fKπ

+ (0)|polynomial ≈
0.0024 as an estimate of the systematic due to the phe-
nomenological q2-interpolation. As simulations move closer
to the physical pion mass the value of q2

max = (mK −mπ)2

increases. Therefore the interpolation to q2 = 0, which
crucially depends on the high precision which one is able
to achieve for the form factor at q2

max, will be increasingly
sensitive to the ansatz one makes. One therefore expects
the systematic error due to the interpolation to increase.
We emphasise that the approach advocated here entirely
removes this uncertainty.

Quark mass dependence: Inserting the unitary and
partially quenched kaon mass which we simulated here
together with the parameters in (16) into the phenomeno-
logical ansatz (15) we can predict the form factor that
is to be expected for ams = 0.03 and ams = 0.04 with
amq = 0.005 as illustrated in terms of the blue (dot-
dashed) and red (dashed) curve in figure 2. Both curves are
nicely compatible with the new blue and red data points,
thus confirming that the ansatz parameterises the depen-
dence of the form factor on a partially quenched strange
quark well.

Combining the data sets P4, Z4PSs3 and Z4PSs4
and carrying out the global fit (15) we update the previ-
ous result fKπ

+ (0) = 0.9644(33) → fKπ
+ (0) = 0.9630(34)

(statistical errors only) at the physical point. The result
of the global fit is also illustrated in figure 4 by the solid
black line.

The chiral extrapolation of the lattice data is well con-
strained by the natural hinge-point fKπ

+ (0)|mK=mπ = 1.
As can be seen in figure (4), our data as well as the
global SU(3) fit-ansatz (15) nicely approach this point

Fig. 3. Illustration of the dependence of the fit result (with
the ansatz in eqn. (15)) on the choice of the decay constant.
The horizontal red lines indicate our estimate of the resulting
systematic uncertainty.

for mπ → mK . In contrast, in SU(2) chiral perturba-
tion theory one expands the form factor around vanishing
pion mass at a fixed strange quark mass [9] (in fact, all
strange quark mass dependence resides in the low energy
constants). The limit fKπ

+ (0)|ms=mq = 1 is not naturally
implemented in this expansion. Given our experience with
SU(2) fits to other pion and kaon observables in [28] such
an expansion describes the lattice data reliably only be-
low mπ ≈ 400MeV. In contrast to our study in [28] here
we only have data for two values of the pion mass be-
low this cut-off and extrapolations are therefore not well
constrained. Alternatively one can include data at heavier
pion masses. However, fits of acceptable quality can then
only be obtained after adding an extra term (∝ c4) to the
expression in [9]. Given these considerations we refrain
from presenting fit results based on SU(2) chiral pertur-
bation theory.

Estimates of systematic errors: The new data pre-
sented here confirms the ansatz for the q2-interpolation
for the smallest mass used in ref. [6], i.e. amq = 0.005.
Since q2

max increases as mq decreases, it is at this mass
that q2

max is the largest (and therefore furthest away from
q2 = 0) and hence the interpolation is the least con-
strained. We are therefore confident that the pole ansatz
previously used in fits to our data [6] describes the form
factor data well also for all the other simulation param-
eters where q2

max is closer to the origin. The systematic
error due to the interpolation can be safely removed from
our final result.

As discussed in section 5, a potential source of sys-
tematic error which to our knowledge hasn’t been taken
into account systematically in any previous computation
of fKπ

+ (0) is the choice of the decay constant entering in
the SU(3) NLO prediction for the form factor. Lacking a
precise value of the decay constant in the chiral limit we
repeated the global fit for the three choices f = 100, 115,
131MeV and found for the central values of the form-
factor fKπ

+ (0) = 0.9556, 0.9599, 0.9630, respectively. In
each case the fit was of very good quality. This is quite a
sizeable variation in the central value which is illustrated
in figure 3. We found that the choice of decay constant
particularly changes the slope of fKπ

+ (0) with respect to
m2

π in the region of small pion masses where we do not

f+(0)

• achieve a result for f+(0) with comparable precision to standard methods

• Removes model dependence of q2 interpolation

Eur. Phys. J. C69 (2010) 159-167



Recent Progress to Light Quark Masses

Lattice 2012 

𝑓ା(0) vs 𝑚గ
ଶdependence  

-no strange quark mass correction 
 

K. Sivalingam (RBC/UKQCD)

Semileptonic decays at q2 = 0: Nf = 2 + 1 + 1

First very preliminary results
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Lattice 2012
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fit results
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c4 + c6,π ξπ ⇒ central value
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c4 + c′′4,π ln2[ξπ] (ill-determined cX )

c4 + c6,π ξπ + c6,K ξK

assume O((aΛ)2) error in f2 + ∆f

f+(0) = 0.959(6)stat(4)chiral(3)a!=0

= 1 − 0.024 [f2] − 0.018(8) [∆f ]

|Vus| = 0.2256(19)

∆CKM = |Vud|
2 + |Vus|2 + |Vub|

2 − 1

= −1(9) × 10−4

T. Kaneko Chiral behavior of kaon semileptonic form factors in lattice QCD

T. Kaneko (JQCD)
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Figure 1: Comparison of lattice results (red squares) for f+(0) and fK/fπ with various model
estimates based on χPT (blue triangles). Full and empty squares represent simulations with
Nf = 2 + 1 and Nf = 2, respectively. The vertical bands indicate our estimates."

lattice data yield f+(0) = 1, irrespective of the lattice spacing or the size of the box and for
any value of ms. Cut-off effects can therefore only affect the difference 1−f+(0), which turns
out to be about 0.04. Indeed, the estimate provided by RBC/UKQCD 10 for the uncertainties
due to discretization effects shows that these are sub-dominant: inflating the corresponding
error by a factor of up to 2 barely affects the net systematic uncertainty.

In the result quoted for Nf = 2, the brackets indicate the statistical and systematic errors,
respectively. The ETM collaboration provides a more comprehensive study of the systematics
by presenting results for three lattice spacings [64] and simulating at lighter pion masses (down
to Mπ = 260 MeV). This allows to better constrain the chiral extrapolation, using both SU(3)
[35] and SU(2) [37] chiral perturbation theory. Moreover, a rough estimate for the size of the
effects due to quenching the strange quark is given, based on the comparison of the result for
Nf = 2 dynamical quark flavours [52] with the one in the quenched approximation, obtained
earlier by the SPQcdR collaboration [65].

The quality criteria laid out in section 2 require a systematic study of lattice artifacts.
As indicated by the colour code in Table 1, the errors due to the continuum extrapolation
yet need to be investigated in more detail for the data with Nf = 2 + 1, while for Nf = 2,
where the quoted uncertainties are larger, these errors are under somewhat better control.
The value

f+(0) = 0.956(8) (our estimate, direct) (7)

covers both results in equation (6). In our opinion, it represents a conservative estimate for
the range permitted by the presently available direct determinations of f+(0) in lattice QCD,
not only for Nf = 2, but also for Nf = 2 + 1.

For fK/fπ, Table 2 contains several simulations with Nf = 2+1 dynamical quark flavours.
The latest update of the MILC program is reported in MILC 10 [39]. We use the results
quoted there when forming averages. Three further data sets meet the criteria formulated in
the introduction: BMW 10 [41] and HPQCD/UKQCD 07 [49] with Nf = 2 + 1 and ETM

5
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π
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Figure 2: The plot compares the information for |Vud|, |Vus| obtained on the lattice with
the experimental result extracted from nuclear β transitions. The dotted arc indicates the
correlation between |Vud| and |Vus| that follows if the three-flavour CKM-matrix is unitary.

09 [52] with Nf = 2 dynamical flavours. We ignore possible correlations due to the fact that
MILC 10 and HPQCD/UKQCD 07 have partly used the same set of gauge configurations and
apply the procedure outlined in section 2.2 to the three sets with Nf = 2+1. The resulting fit
is of good quality, with fK/fπ = 1.193(4) and χ2 = 0.4 for 3 data points and 1 free parameter.
The systematic errors of the individual data sets are larger: 0.005, 0.007 and 0.006 for MILC
10, HPQCD/UKQCD 07 and BMW 10, respectively. Following the prescription of section
2.2, we replace the error by the smallest one of these numbers. Together with the ETM 09
result for Nf = 2, our estimates thus read

fK/fπ = 1.193(5) , (direct, Nf = 2 + 1) , (8)

fK/fπ = 1.210(6)(17) , (direct, Nf = 2) .

It is instructive to convert the above results for f+(0) and fK/fπ into a corresponding
range for the CKM matrix elements Vud and Vus, using the relations (1). Consider first the
results for Nf = 2+1. The range for f+(0) in (6) is mapped into the interval Vus = 0.2255(14),
depicted as a horizontal gray band in Figure 2, while the one for fK/fπ in (8) is converted
into Vus/Vud = 0.2312(11), shown as a green band. The red curve is the intersection of these
two bands. More precisely, it represents the 68% likelihood contour, obtained by treating
the above two results as independent measurements. A Gaussian in f+(0) corresponds to a
Gaussian in the variable 1/Vus. Since the width is small, the distribution in the variable Vus is
also approximately Gaussian. The corresponding likelihood function is given by χ2

a = (Vus −
0.2255)2/0.00142. Likewise, a Gaussian in fK/fπ is mapped into an approximately Gaussian
distribution of the variable Vus/Vud, with χ2

b = (Vus/Vud − 0.2312)2/0.00112. Expressed
in terms of the CKM matrix elements, the Nf = 2 + 1 results for f+(0) and fK/fπ are
thus characterized by the likelihood function χ2 = χ2

a + χ2
b . The minimum occurs at the

intersection of the centers of the two bands, where χ2 vanishes. The contour shown is the line
where χ2 differs from the minimum by unity. Values of Vus, Vud in the region enclosed by this

6

• Combining lattice results with experimental decay rates, FLAG [1011.4408] finds

K ! ⇡`⌫

K ! µ⌫

f+(q
2 = 0)

fK/f⇡



Hyperon Semi-Leptonic Decays

• Provide an alternative method for determining the CKM matrix element |Vus|

• The axial semi-leptonic form factor at q2=0 gives gA/gV 

•                                 is analogous to usual     decay

• expect 
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Hyperon Semi-Leptonic Decays
• Experimental decay

• Lattice 3pt functions
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f0(q2max) - Results

Figure 3: f0(q2max) for ⇤0 �! p and ⌅� �! ⇤0. Results are renormalised using
estimate of ZV = 0.842. The Kl,s values are the same as Table 1 but with ⇠ 200
configurations in each case.

Though Figure ?? concerns the value f0(q2max) and is not the desired value of
f1(0), necessary for an estimation of |Vus|, there are some conclusions we can draw
from these preliminary results. There is evidence of adherence to the Ademolo-Gatto
theorem and the values of f0(q2max) for ⇤

0 �! p and ⌅� �! ⇤0 are acceptable within
error bands.

The results for ⌃� �! ⇤0, were not originally what was expected, as outlined
in notes from April 3rd. There appears to have been an error with the sequential
source operator. This has been corrected and the expected answer is resultant; 30
configurations were run for this transition on the Kl = 12083, Ks = 12104 ensemble
using this changed seuqential source and the result for R1 was 0.00416 ± 0.00214.
Calculations are ongoing for this transition and results will be available soon.

One remaining concern, as previously mentioned, is the magnitude of the error
bars. The errors when calculating g̃1/f0 are significantly smaller. This appears to be
the result of only having to combine three point correlation functions to the exclusion
of two point correlators. Is it worth examining the ‘forward-backward’ ratio with
⇠ 100 configurations (using a single ensemble) to compare the magnitude of the
errors with those produced using R1? This would require the further computation
of correlators.
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g̃1(q2max)
f0(q2max)

- Results

Figure 4: g̃1(q2max)
f0(q2max)

for ⇤0 �! p and ⌅� �! ⇤0. ⌃� �! ⇤0 is not pictured as f1 is
⇠ 0. The Kl,s values are the same as Table 1 but with ⇠ 200 configurations in each
case. Results are renormalised using estimate of ZV = 0.842 and ZA = 0.865

In contradistinction to the results for f0(q2max), the errors on g̃1(q2max)
f0(q2max)

are a little

smaller, while the slope (or lack thereof) is not as clear. The values for these
quantities are similar, within error, to both theoretical and experimental estimates.
The results for ⌃� �! ⇤0 cannot be displayed on this graph as f0(q2max) ⇠ 0 in new
simulations, as expected. Any calculation of g̃1/f0 for this transition blows up and
errors dominate. Perhaps an atempt to extract g̃1 in isolation, if possible, would be
su�cient to determine if recent corrections to the sequential source are accurate?

Evidence of Ademollo-Gato is not present, as expected. More configurations
would need to be considered to determine the slope of these quantities.

The next step to determine f1(0) and g1(0)/f1(0) would be to include momentum
in the analysis. Raw data for this has already been produced but more e↵ort in
analysing that data would be required.
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Hyperon semi-leptonic form factor
• Other recent results, S. Sasaki: 1102.4934
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FIGURE 1. Interpolation of | fS(q2)| to q2 = 0 for Ξ0 → Σ+ (left) and Σ− → n (right) at amud = 0.005.
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Summary



• This week we have looked a variety of aspects of hadron structure and how they can 
be studied on the Lattice

• From the lattice side, we have learnt about

• Three point functions

• Extraction of matrix elements via ratios of 3pt/2pt functions

• Determination of Form factors, moments of PDFs, GPDs from these matrix 
elements

Summary



• From a phenomenological point of view, we have studied

• Elastic scattering               Form Factors

• Information on the distribution of charge (quarks) in the transverse plane

• DIS                (Moments) of Parton Distribution Functions

• Distribution of momentum

• Neutron beta decay                nucleon axial charge

• Combination of these ideas into a general picture               Generalised Parton 
Distribution Functions

• Transverse densities

• Spin decomposition

Summary



Summary
• Information on hidden flavour, e.g. Strangeness in the nucleon

• Nucleon sigma terms

• Implications for Dark Matter searches

• Semileptonic Decays                  |Vus|


