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• Generalised Parton Distributions

• Definition

• Relevant limiting cases

• Impact Parameter GPDs

• Nucleon Spin

• Transverse Spin Densities

• Transverse Momentum Dependent Parton Distribution Functions
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• So far we have studied

• Form Factors

• Information on the distribution of charge 
(quarks) in the transverse plane
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• So far we have studied

• Form Factors

• Information on the distribution of charge 
(quarks) in the transverse plane

• (Moments) of Parton Distribution Functions

• Distribution of momentum
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• So far we have studied

• Form Factors

• Information on the distribution of charge 
(quarks) in the transverse plane

• (Moments) of Parton Distribution Functions

• Distribution of momentum

• Now we want to combine these ideas into a general 
picture

• Generalised Parton Distribution Functions

• “3D” picture of the nucleon

Generalised Parton Distributions 
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• Formal definition of GPDs:

• Consider a process where the proton target stays intact (ala elastic)

• But the probe has enough resolution to identify a single quark (ala DIS)

• Known as Deeply Virtual Compton Scattering

Generalised Parton Distributions
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Generalised Parton Distributions

• If we compare this form with the familiar matrix element of the EM current

• we get the impression that the GPDs H and E are just more generalised forms of the 
ordinary EM form factors F1 and F2 
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M. Diehl (2001): 8 real functions needed for a complete 
description of the nucleon quark structure at twist 2

H(x, ⇠, t), E(x, ⇠, t), H̃(x, ⇠, t), Ẽ(x, ⇠, t)

HT (x, ⇠, t), ET (x, ⇠, t), H̃T (x, ⇠, t), ẼT (x, ⇠, t)



Generalised Parton Distributions

• Forward limit (t=0): reproduces the parton distributions

• Integrating over all momentum fractions

•    Form Factors

Basic Properties
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• Recall: Quark (charge) distribution in the transverse plane

Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon
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• Recall: Quark (charge) distribution in the transverse plane

• Probabilistic interpretation of                                                                  at

Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane
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• Recall: Quark (charge) distribution in the transverse plane

• Probabilistic interpretation of                                                                  at

• Note that since the longitudinal momentum is fixed (x)

• Longitudinal position undetermined (Heisenburg)

• Distribution in impact parameter space meaningful

Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane
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• Recall: Quark (charge) distribution in the transverse plane

• Probabilistic interpretation of                                                                  at

• If we consider the case where one of the quarks carries all of the nucleon’s 
momentum

• Then the quark must be sitting at the centre-of-momentum

• Hence the GPD must be independent of t 

Impact Parameter GPDs (M. Burkardt, 2000)
Quark densities in the transverse plane
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Generalised Parton Distributions
• Experimental access to GPDs is provided by

• Deeply Virtual Compton Scattering (DVCS)

• Meson electroproduction   

• However direct (model independent) extraction from experimental data difficult 
(impossible?)

•   Additional input from, e.g. Lattice, would be extremely helpful

ep ! ep�

ep ! ep⇡, ⇢,!, . . .



• Yesterday we saw how moments of Structure Functions (or Parton Distribution 
Functions) can be obtained from matrix elements of local operators that could be 
computed on the Lattice

• Similarly, moments w.r.t x of GPDs are defined in terms of generalised form factors 

• where the GFFs are obtained from matrix elements of local (twist-2) operators

Moments of GPDs
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Moments of GPDs
• Similar equations exist for the polarised case for matrix elements of the operators

• in terms of the GFFs

• and also for the tensor operators 

• with GFFs 

• It is also possible to construct matrix elements for towers of gluonic operators

• Note the relation to the more familiar form factors
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Moments of GPDs
• Matrix elements are then extracted from the lattice three-point functions as before 

using ratios

• and the coefficients of the generalised form factors are computed using
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Moments of GPDs
• Results for generalised form factors 

relevant for the second moments of H 
and E

Example

Lattice results for GPDs: distributions in impact parameter space
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Lattice results for GPDs: distributions in impact parameter space
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• Recall in our discussion about GPDs in the impact parameter plane

• Since higher moments are weighted more by the larger-x range

Slope of GFFs should decrease as n increases

Impact Parameter GPDs (M. Burkardt, 2000)
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• GFFs are fitted with a dipole form

• Form factors flatten as n grows

• Dipole mass grows with n
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Fourier transform the fitted dipole forms to impact parameter space

QCDSF: hep-lat/0609001



Nucleon Spin
• Polarised DIS: only ~30% of the proton’s spin due to quark spins

• “Spin crisis”

• Only a “Spin puzzle” - remaining 70% made up of

• quark orbital angular momentum

• gluon spin

• gluon orbital angular momentum

• Exact decomposition unknown

• How are they defined/measured?

• Ongoing controversy/discussion in the field regarding decomposition of nucleon 
spin



Nucleon Spin
• Total angular momentum well defined 

• Ambiguities arise when decomposing J into contributions from different constituents

• Gauge theories: changing gauge may also shift angular momentum between various  
degrees of freedom 

• Decomposition of angular momentum in general depends on scheme

• Need to be aware of this scheme-dependence in the physical interpretation of 
experimental/lattice/model results in terms of spin vs. OAM

• Two common decompositions:

•                                         total fraction of the helicity carried by the quarks

Jp = 1
2

Jz = 1
2�⌃+

P
q Lq + Jg Jz = 1

2�⌃+
P

q Lq +�G+ Lg

Ji (1997) Jaffe & Manohar (1990)
�⌃ = �u+�d+�s



Nucleon Spin

• Only           common between the two decompositions

• In general                    or 

•          measured in p-p scattering

• Controversy surrounds: Is there a gauge-invariant separation of       into          and

• Ji:       and       determined from experiment or Lattice

• Local operator exists for                                         but                                    easier 

•       accessible from gluon GPDs, but                             easier 
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• Spin decomposed in terms of quark and gluon angular momentum

• Further decomposition into spin and orbital angular momentum

• Also expressed in terms of moments of GPDs

• Matrix elements of the energy momentum tensor
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Generalised Form Factors A2, B2, C2

9

FIG. 8: Unpolarized (vector) generalized n = 2 form factors for the flavor combinations u − d (left) and u + d (right).
Disconnected contributions are not included.

That is,

ZO =
ZO,pert

Zpert
A

· Znonpert
A . (18)

In the continuum, because of Lorentz invariance, the totally symmetric operator q̄[γ5]γ{µDνDρ}q cannot mix with
the mixed symmetry operator q̄[γ5]γ[µD{ν]Dρ}q, where the square brackets denote antisymmetrization. In contrast,

on the lattice, both operators appear in the same representation, τ (8)
1 , so that they can and do mix. However, the

mixing coefficient[39, 40], ZO
ij = 2.88 × 10−3, is very small, so that we have ignored the contribution of the mixed

symmetry operator in this present work.
All results below have been transformed to a scale of µ2 = 4 GeV2.

LHPC: PRD 77, 094502(2008), 0705.4295Lattice results for GPDs: distributions in impact parameter space
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• However from our lessons yesterday regarding the systematic errors in      and         
we must be careful when making precision statements from the current lattice data

•                 likely to suffer from finite size effects

•                           may suffer from excited state contamination

• They both are likely to have non-trivial chiral extrapolations

Nucleon Spin
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Figure 11. Experimental constraints on the total up and down quark contributions to the
proton spin. JLab Hall A neutron [65] and HERMES transversely polarized proton [49]. The
theory/model values are from AHLT [66], QCDSF quenched [67] and unquenched [68] LHPC
[69], and Thomas [70].

calorimeter to improve the neutral pion subtraction, the two beam energies will allow a more
complete separation of the DVCS2 and real and imaginary parts of the DVCS·BH interference
on a quasi-free neutron. This will be an important step towards a full flavor separation of DVCS.
Both experiments E07-007 and E08-025 are running in Autumn 2010.

4. The CLAS DVCS Program at 6 GeV
4.1. Unpolarized Proton Targets
A new calorimeter of 424 tapered PbWO4 crystals was constructed to provide complete 2π
photon coverage for polar angles from 4.5◦ to 15◦, relative to the beam line. A ≈ 5 Tesla
superconducting solenoid was added at the target, to confine Moeller electrons. The new
calorimeter is located 60 cm from the target where the solenoid fringe field is still a few
Tesla. Therefore, the individual crystals were read-out by Avalanche Photo-Diodes. Having
strongly benefited from the CERN CMS pioneering research and development effort on this
recent technology, the present CLAS experiment is the first one to use such photodetectors in a
physics production mode.

All particles of the ep → epγ reaction final state were detected in CLAS. To ensure exclusivity,
several cuts were made, a couple of them being illustrated in Fig.12. In spite of these very
constraining cuts, some contamination from the ep → epπ0 reaction remained. Indeed, when
one of the two γ’s originating from the decay π0 ↪→ γγ escapes detection and/or has little energy
(below the 150 MeV threshold of the calorimeter), an event ep → epγ(γ) may pass all DVCS cuts
and become a perfect candidate to be selected as an ep → epγ event. Such “1-γ” π0 background
can be estimated from Monte-Carlo combined with the actual number of detected “2-γ” π0’s,
resulting, depending on the kinematics, in contaminations ranging from 1 to 25%, being 5% in
average.

The extensive CLAS dataset of DVCS beam spin asymmetries (BSA) is illustrated in Fig. 13.
The blue solid curves are the result of the twist-2 handbag GPD calculation (VGG) including

Nucleon Spin
• Comparison of current lattice determinations of Ju and Jd with experimental 

constraints



• Transverse densities:

Transverse Spin Structure of the Nucleon
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Transverse Spin Structure of the Nucleon
• Aim to gain insights into the spin density of quarks inside the nucleon

• Transversity                           : prob to find transversely polarised q with mom fraction 
x in a transversely polarised nucleon

• Sivers,                      : measures correlation of intrinsic q trans. momentum and trans. 
nucl. spin  

• Boer-Mulders                      : measures correlation of intrinsic q trans. momentum and 
trans q spin

�q(x) = h1(x)

f�1T (x, k2
�)

h�1 (x, k2
�)

Non-vanishing        interesting experimental 
observables

eg. single spin asymmetries [HERMES]
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Sivers Effect

Expect sizeable effect with opposite sign for up and down quarks (Sivers 
effect)



• Transverse densities:

Transverse Spin Structure of the Nucleon

[Diehl & Haegler, 2005]   [Burkardt, 2005]

F (b2
⇤) =

�
d2�⇤ e�i⌅b�·��F (�2

⇤) =
�

d2�⇤ e�i⌅b�·�� F (0)
(1��2

⇤/M2)p

⇤n(b⇤, s⇤, S⇤) =
⌥ 1

�1
dx xn�1⇤(x, b⇤, s⇤, S⇤) =

1
2

⇧
An0(b2

⇤) + si
⇤Si

⇤

⇤
ATn0(b2

⇤)� 1
4m2

�b�
�ATn0(b2

⇤)
⌅

+
bj
⇤⇥ji

m

�
Si
⇤B⇥

n0(b
2
⇤) + si

⇤B
⇥
Tn0(b

2
⇤)

⇥
+ si

⇤(2bi
⇤bj

⇤ � b2
⇤�ij)Sj

⇤
1

m2
�A⇥⇥

Tn0(b
2
⇤)

⌃



• Transverse densities:

Transverse Spin Structure of the Nucleon

[Diehl & Haegler, 2005]   [Burkardt, 2005]

F (b2
⇤) =

�
d2�⇤ e�i⌅b�·��F (�2

⇤) =
�

d2�⇤ e�i⌅b�·�� F (0)
(1��2

⇤/M2)p

⇤n(b⇤, s⇤, S⇤) =
⌥ 1

�1
dx xn�1⇤(x, b⇤, s⇤, S⇤) =

1
2

⇧
An0(b2

⇤) + si
⇤Si

⇤

⇤
ATn0(b2

⇤)� 1
4m2

�b�
�ATn0(b2

⇤)
⌅

+
bj
⇤⇥ji

m

�
Si
⇤B⇥

n0(b
2
⇤) + si

⇤B
⇥
Tn0(b

2
⇤)

⇥
+ si

⇤(2bi
⇤bj

⇤ � b2
⇤�ij)Sj

⇤
1

m2
�A⇥⇥

Tn0(b
2
⇤)

⌃

Pion



• Transverse densities:

Transverse Spin Structure of the Nucleon

[Diehl & Haegler, 2005]   [Burkardt, 2005]

F (b2
⇤) =

�
d2�⇤ e�i⌅b�·��F (�2

⇤) =
�

d2�⇤ e�i⌅b�·�� F (0)
(1��2

⇤/M2)p

⇤n(b⇤, s⇤, S⇤) =
⌥ 1

�1
dx xn�1⇤(x, b⇤, s⇤, S⇤) =

1
2

⇧
An0(b2

⇤) + si
⇤Si

⇤

⇤
ATn0(b2

⇤)� 1
4m2

�b�
�ATn0(b2

⇤)
⌅

+
bj
⇤⇥ji

m

�
Si
⇤B⇥

n0(b
2
⇤) + si

⇤B
⇥
Tn0(b

2
⇤)

⇥
+ si

⇤(2bi
⇤bj

⇤ � b2
⇤�ij)Sj

⇤
1

m2
�A⇥⇥

Tn0(b
2
⇤)

⌃

Pion



Tensor Form Factors

             is sizeable while                  A
d
Tn0(t) A

u
Tn0(t) � 0 2

0 0.5 1 1.5 2 2.5

!t !GeV
2
"

0.2

0.4

0.6

0.8

1

B
T
n
0

Π
,u
#t
$

n#1

n#2

0 0.5 1 1.5 2 2.5

!t !GeV
2
"

0.2

0.4

0.6

0.8

1

B
T
n
0

Π
,u
#t
$

FIG. 2: Lattice results at β = 5.29 and mπ ≈ 600 MeV for
the first two generalized form factors Bπ,u

Tn0(t) for up-quarks
in the π+ as functions of the invariant momentum transfer t.
The corresponding p-pole parameterizations are shown by the
shaded bands.

where ∆⊥ is the transverse momentum transfer. The
momentum-space GFFs Bπ

Tn0(t) parameterize pion ma-
trix elements of local tensor quark operators,

〈π+(P ′)|Oµνµ1···µn−1

T |π+(P )〉 = AS
P̄µ∆ν − ∆µP̄ ν

mπ

×
n−1
∑

i=0
even

∆µ1 · · ·∆µi P̄µi+1 · · · P̄µn−1Bπ
Tni(t) (4)

with P̄ = 1
2 (P ′ + P ), ∆ = P ′ − P and t = ∆2. Here

AS denotes symmetrization in ν, . . . , µn−1 followed by
anti-symmetrization in µ, ν and subtraction of traces in
all index pairs. The tensor operators are given by

Oµνµ1···µn−1

T = AS q iσµν iD
↔µ1 · · · iD

↔µn−1 q (5)

with D
↔

= 1
2 (D

→
− D

←
) and all fields taken at space-time

point z = 0. The analogous matrix elements of local
vector quark operators are parameterized by Aπ

n0(t) as
specified in [6]. For definiteness we consider in the fol-
lowing the GFFs Aπ,u

n0 (t) and Bπ,u
Tn0(t) for up-quarks in a

π+. Their counterparts for down-quarks and for π− or
π0 can be easily determined by charge conjugation and
isospin invariance [3], since Wilson fermions preserve fla-
vor symmetry. We note that Aπ,u

10 (t) is identical to the
electromagnetic pion form factor Fπ(t), which we inves-
tigated in detail in [7].

Lattice QCD results.— Based on our simulations with
Wilson gluons and dynamical, non-perturbatively O(a)
improved Wilson fermions with nf = 2, we have eval-
uated the matrix elements in Eq. (4) for n = 1, 2 and
momentum transfers up to −t ≈ 3GeV2. Configurations
have been generated at four different couplings β = 5.20,
5.25, 5.29, 5.40 with up to five different κ = κsea values
per β, on lattices of sizes V ×T = 163 × 32 and 243 × 48.
We have set the lattice scale a using a Sommer parame-
ter of r0 = 0.467 fm [8, 9]. The pion masses are as low as
400MeV, spatial volumes are as large as (2.1 fm)3, and
lattice spacings are below 0.1 fm. Details on the lattice
parameters are given in [7]. The computationally de-
manding disconnected contributions present for even n
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FIG. 3: Study of discretization errors in Bπ,u
T10(t=0)/mπ.

are not included. For the tensor GFFs Bπ
Tn0 we expect

them to be small in the physical limit, since they require
a chirality flip on a quark line and are thus suppressed
by the quark mass [10]. The lattice results have been
transformed to the MS scheme at a scale of 4GeV2 using
non-perturbative renormalization [11]. Further informa-
tion on the procedures to compute GFFs in lattice QCD
can be found, e.g., in [7, 12, 13], and details of the present
analysis will be given in [14].

As an example we show in Fig. 2 the t dependence
of the GFFs Bπ,u

Tn0(t) for n = 1, 2 at β = 5.29 and a
pion mass of mπ ≈ 600MeV. The extrapolation to the
forward limit t = 0 requires a parameterization of the
t dependence of the lattice results. Since the statistics
and t range of our data is not yet sufficient for sophis-
ticated multi-parameter fits, we use a standard p-pole
form F (t) = F0/[1− t/(pm2

p)]
p, where the forward value

F0 = F (t=0) and the p-pole mass mp are free parameters
for each GFF. Good fits are obtained in a wide range
of p, with a preference for relatively low values. On the
other hand, it was shown in [5] that a regular behavior
of ρn(b⊥, s⊥) in the limit b⊥ → 0 (which is of course in-
accessible in a lattice calculation) requires p > 3/2 for
Bπ,u

Tn0(t). We therefore take p = 1.6 in the following. For
the examples in Fig. 2 we obtain Bπ,u

T10(t=0) = 0.856(60)
with mp = 0.949(57)GeV for the first, and Bπ,u

T20(t=0) =
0.206(24) with mp = 1.239(30)GeV for the second mo-
ment. We stress that our final results show only a mild
dependence on the chosen value of p. Taking, e.g., p = 2,
which corresponds to the power behavior for t → −∞
expected from dimensional counting, changes our fits of
Bπ,u

T (n=1,2)0 by less than the statistical errors even beyond

the region −t < 3GeV2 where data is available [14].
Before discussing potential discretization and finite

size effects as well as the pion mass dependence of our
results we note that, due to the prefactor m−1

π in the pa-
rameterization (4), the GFFs Bπ

Tn0(t) must vanish like
mπ for mπ → 0 [3]. This is also required to ensure that
the densities in Eq. (1) stay positive and finite in the chi-
ral limit. In the following we therefore consider the ratio
Bπ

Tn0

/

mπ, which tends to a constant at mπ = 0.

Figure 3 shows the dependence of Bπ,u
T10(t=0)

/

mπ on
the lattice spacing a for two ranges of pion masses, where
we have excluded those lattice data points which are most

Pion
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FIG. 6: The lowest moment of the densities of unpolarized
(left) and transversely polarized (right) up-quarks in a π+

together with corresponding profile plots. The quark spin
(inner arrow) is oriented in the transverse plane as indicated.

distribution of a transversely polarized up-quark is within
errors of the same strength in a π+ and in the proton. An
explanation of this finding has recently been proposed in
the framework of quark models [16].

The moments of the GPDs Eπ
T in the pion and ET in

the nucleon can be connected with the respective Boer-
Mulders functions, which describe the correlation be-
tween transverse spin and intrinsic transverse momen-
tum of quarks in an unpolarized hadron [17]. They lead,
e.g., to azimuthal asymmetries in semi-inclusive deep in-
elastic scattering (SIDIS) and in Drell-Yan lepton pair
production. The density of quarks with intrinsic trans-
verse momentum k⊥ and transverse spin s⊥ in a π+ is
determined by the unpolarized distribution fπ

1 and the
Boer-Mulders function hπ,⊥

1 through

f(x, k⊥, s⊥) =
1

2

[

fπ
1 (x, k2

⊥) +
si
⊥εij kj

⊥

mπ
hπ,⊥

1 (x, k2
⊥)

]

.

(7)
We notice the close similarity between Eq. (7) and the
impact parameter density (1), but emphasize that k⊥
and b⊥ are not Fourier conjugate variables. A dynamical
relation between k⊥ and b⊥ dependent distributions has
been proposed in [18, 19] and implies h⊥,π

1 ∼ −Eπ
T for

the distribution appearing in SIDIS—we recall that h⊥,π
1

is time reversal odd and thus enters with opposite signs
in SIDIS and Drell-Yan production [20]. With this rela-
tion, our results for Bπ

Tn0 imply that the Boer-Mulders
function for up-quarks in a π+ is large and negative, and
that its ratio to the unpolarized distribution is similar for
up-quarks in a π+ and in a proton.

Conclusions.— We have calculated the first two mo-
ments of the quark tensor GPD Eπ

T in the pion. We find
that the spatial distribution of quarks is strongly dis-

torted if they are transversely polarized, which reveals a
non-trivial spin structure of the pion. The effect has the
same sign and very similar magnitude as the correspond-
ing distortion for quarks in the nucleon [4]. Assuming
the relation between impact parameter and transverse
momentum densities proposed in [18, 19] this suggests
that all Boer-Mulders functions for valence quarks may
be alike, as argued in [16]. The large size of the effect
might give new insight into the mechanism responsible
for the large cos(2φ) azimuthal asymmetry observed in
unpolarized πp Drell-Yan production, which is sensitive
to the product h⊥,π

1 h⊥
1 , see, e.g., the discussion in [21]

and references therein. It also provides additional mo-
tivation for future studies of azimuthal asymmetries in
unpolarized πp and polarized πp↑ Drell-Yan production
at COMPASS, the latter giving rise to a sin(φ + φS)
asymmetry sensitive to h⊥,π

1 h1, where h1 is the quark
transversity distribution in the nucleon [22].

The numerical calculations have been performed on
the Hitachi SR8000 at LRZ (Munich), apeNEXT and
APEmille at NIC/DESY (Zeuthen) and BlueGene/Ls
at NIC/FZJ (Jülich), EPCC (Edinburgh) and KEK (by
the Kanazawa group as part of the DIK research pro-
gram). This work was supported by DFG (Forscher-
gruppe Gitter-Hadronen-Phänomenologie and Emmy-
Noether program), by HGF (contract No. VH-NG-004)
and by EU I3HP (contract No. RII3-CT-2004-506078).
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Transverse Momentum Distributions
• Transverse Momentum Dependent Parton Distribution Functions (TMDs) provide a 

complimentary approach to studying the distribution of partons in the nucleon

• GPDs                  spatial distributions in the transverse plane

• TMDs                  intrinsic transverse motion of partons

• When combined, we can obtain a full 3-D imaging of the nucleon

• TMDs are intimately tied with the orbital motion of quarks in the nucleon

• Spin-orbit couplings lead to asymmetries in scattering experiments



Transverse Momentum Distributions
• The simplest TMD is the unpolarised function

•     the probability to find a quark carrying the longitudinal momentum 
fraction x and a transverse momentum 

• The ordinary quark PDF is recovered when integrating over the transverse 
momentum

• TMDs are obtained from matrix elements

• via (for example)

f

q
1 (x, k?)

k? = |~k?|

Z
d

2
~

k?f
q
1 (x, k?) = f

q
1 (x) (= q(x)) gauge-link operator

4

(a) (b)

0

b

v
´v

?

´v+b

´!1

FIG. 1: (a) Straight gauge link. (b) Staple-shaped gauge link as in SIDIS and DY.

where �

+ projects on leading-twist. In the context of the density interpretation of TMDs mentioned in section IIA,
the ratio above yields the average transverse momentum in y-direction, for quarks with given longitudinal momentum
fraction x inside a proton polarized in x-direction. We will show below that quantities like this can be calculated
rather directly on the lattice. For the reasons mentioned above, we limit ourselves to ratios formed from x-integrated
quantities. Let us therefore consider

hk
y

i
TU

⌘ m

N

f

?[1](1)

1T

f

[1](0)

1

. (11)

Ignoring the role of anti-quarks, this ratio, called in the following “Sivers shift”, represents the average transverse
momentum of unpolarized (“U”) quarks orthogonal to the transverse (“T”) spin of the nucleon. Note, however, that

the denominator f [1](0)

1

arises from a di↵erence of quarks and anti-quarks and thus gives the number of valence quarks

in the nucleon. On the other hand, in the numerator f?[1](1)

1T

, the average transverse momentum of quarks and anti-

quarks is summed over [13, 16]. A profound interpretation of f?[1](1)

1T

in impact parameter space has been given in

Ref. [23]. However, as mentioned before, understanding f

?[1](1)

1T

simply as a k
T

-weighted TMD is problematic, since
the k

T

-integral is expected to be UV divergent. A natural way of circumventing this divergence is to generalize the
Sivers shift to an expression in terms of the Fourier-transformed TMDs:

hk
y

i
TU

(b2
T

; . . .) ⌘ m

N

f̃

?[1](1)

1T

(b2
T

; . . .)

f̃

[1](0)

1

(b2
T

; . . .)
. (12)

This is the type of quantity that we investigate in the present study. In the limit b2
T

= 0 we recover the Sivers

shift (11), because the Fourier transformed TMDs f̃?[1](1)

1T

and f̃

[1](0)

1

coincide with the moments f?[1](1)

1T

and f

[1](0)

1

,
respectively. We are, however, interested in the generalized Sivers shift for non-zero b2

T

, where the said UV-divergence
disappears. The variable b2

T

e↵ectively acts as a regulator. Moreover, the b
T

-dependence allows us to study di↵erences
in the widths of distributions on a qualitative level.

D. Link geometry

The prescription for the geometry of the gauge link path C
b

a↵ects both the number of allowed structures appearing
in Eqs. (3)-(5) and the numerical result for the TMDs. We therefore need to ask which link geometries are appropriate.

The simplest link geometry is a straight line connecting the quark fields at 0 and b, see Fig. 1a. TMDs with
straight gauge links have been studied on the lattice in Refs. [12, 13]. While these “process-independent” TMDs are
interesting from a theoretical point of view in their own right, it is so far not known how to relate these quantitatively
to the TMDs that play a role in scattering experiments. The operator with straight gauge links o↵ers the largest
possible degree of symmetry. As a result, T-odd TMDs vanish for straight gauge links.

For TMDs that allow us to describe measurable e↵ects in scattering experiments such as SIDIS or DY, the form of
the gauge link is largely dictated by the physical process. To understand scattering experiments at high momentum
transfer Q, one tries to apply approximations valid for large Q that separate hard, perturbative and soft, non-
perturbative scales in the dominant physical processes in order to arrive at an expression for the cross section in
factorized form. In the standard collinear approximation, all internal transverse momenta are integrated out and
conventional parton distribution functions and fragmentation functions are used to describe the process. In certain
kinematical regions this approximation is insu�cient. An example is SIDIS, where the momentum P

h

of one of
the final state hadrons is measured after a lepton-nucleon collision at large momentum transfer Q. The transverse
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Transverse Momentum Distributions

• On the lattice, requires the moments of TMDs are obtained by the computation of a 
non-local matrix element, where the quark fields are separated by some distance b 
and are joined by a staple of gauge links
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Transverse Momentum Distributions
• At fixed b, extrapolate to 13
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FIG. 3: Extraction of the generalized Sivers shift on the lattice with m⇡ = 518MeV using a lattice nucleon momentum
|P lat| = 2⇡/(aL̂) ⇡ 500MeV at the corresponding maximal Collins-Soper evolution parameter ⇣̂ = 0.39. The continuous
horizontal lines are obtained from two independent averages of the data points with staple extents in the ranges ⌘|v| = 7a..12a
and ⌘|v| = �12a.. � 7a, respectively. The outer data points shown with empty symbols have been obtained from an anti-
symmetrized mean value of these averages, i.e., the expected T-odd behavior of the Sivers shift has been put in explicitly.
These outer data points are our estimates for the asymptotic values at ⌘|v| ! ±1 and thus represent the generalized Sivers
shifts for SIDIS and DY. Error bars show statistical uncertainties only. Figures (a) and (b) have been obtained with rather
small quark field separations |bT| = 1a and 2a. Therefore, they might be a↵ected by significant lattice cuto↵ e↵ects.
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FIG. 4: Generalized Sivers shift as a function of the quark separation |bT| for the SIDIS case (⌘|v| = 1), extracted on the
lattice with m⇡ = 518MeV for ⇣̂ = 0.39. The data points lying in the shaded area below |bT| ⇡ 0.25 fm might be a↵ected by
significant lattice cuto↵ e↵ects. Error bars show statistical uncertainties only.
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FIG. 1: (a) Straight gauge link. (b) Staple-shaped gauge link as in SIDIS and DY.

where �

+ projects on leading-twist. In the context of the density interpretation of TMDs mentioned in section IIA,
the ratio above yields the average transverse momentum in y-direction, for quarks with given longitudinal momentum
fraction x inside a proton polarized in x-direction. We will show below that quantities like this can be calculated
rather directly on the lattice. For the reasons mentioned above, we limit ourselves to ratios formed from x-integrated
quantities. Let us therefore consider
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Ignoring the role of anti-quarks, this ratio, called in the following “Sivers shift”, represents the average transverse
momentum of unpolarized (“U”) quarks orthogonal to the transverse (“T”) spin of the nucleon. Note, however, that

the denominator f [1](0)
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arises from a di↵erence of quarks and anti-quarks and thus gives the number of valence quarks

in the nucleon. On the other hand, in the numerator f?[1](1)
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, the average transverse momentum of quarks and anti-

quarks is summed over [13, 16]. A profound interpretation of f?[1](1)

1T

in impact parameter space has been given in

Ref. [23]. However, as mentioned before, understanding f

?[1](1)
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simply as a k
T

-weighted TMD is problematic, since
the k

T

-integral is expected to be UV divergent. A natural way of circumventing this divergence is to generalize the
Sivers shift to an expression in terms of the Fourier-transformed TMDs:
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This is the type of quantity that we investigate in the present study. In the limit b2
T

= 0 we recover the Sivers
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respectively. We are, however, interested in the generalized Sivers shift for non-zero b2

T

, where the said UV-divergence
disappears. The variable b2

T

e↵ectively acts as a regulator. Moreover, the b
T

-dependence allows us to study di↵erences
in the widths of distributions on a qualitative level.

D. Link geometry

The prescription for the geometry of the gauge link path C
b

a↵ects both the number of allowed structures appearing
in Eqs. (3)-(5) and the numerical result for the TMDs. We therefore need to ask which link geometries are appropriate.

The simplest link geometry is a straight line connecting the quark fields at 0 and b, see Fig. 1a. TMDs with
straight gauge links have been studied on the lattice in Refs. [12, 13]. While these “process-independent” TMDs are
interesting from a theoretical point of view in their own right, it is so far not known how to relate these quantitatively
to the TMDs that play a role in scattering experiments. The operator with straight gauge links o↵ers the largest
possible degree of symmetry. As a result, T-odd TMDs vanish for straight gauge links.

For TMDs that allow us to describe measurable e↵ects in scattering experiments such as SIDIS or DY, the form of
the gauge link is largely dictated by the physical process. To understand scattering experiments at high momentum
transfer Q, one tries to apply approximations valid for large Q that separate hard, perturbative and soft, non-
perturbative scales in the dominant physical processes in order to arrive at an expression for the cross section in
factorized form. In the standard collinear approximation, all internal transverse momenta are integrated out and
conventional parton distribution functions and fragmentation functions are used to describe the process. In certain
kinematical regions this approximation is insu�cient. An example is SIDIS, where the momentum P

h

of one of
the final state hadrons is measured after a lepton-nucleon collision at large momentum transfer Q. The transverse
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Results: Sivers shift

Dependence of SIDIS limit on |bT |
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• Lattice results for moments of Generalised Parton Distributions

• Provide information on the spatial distribution of quarks in the transverse plane

• Interesting correlations between spin and coordinate degrees of freedom

• Via Ji’s sum rule, they can provide access to total quark contribution to the 
nucleon’s spin

• Also a decomposition into helicity and orbital angular momentum 
contributions

• An exploratory study has shown that it is also possible to extract moments of 
Transverse Momentum Dependent Parton Distribution Functions from the lattice

• Provides the possibility for a full “3-D” image of the nucleon

GPDs and TMDs


